Controlled Release of Nerve Growth Factor from Sandwiched Poly(L-lactide-co-glycolide) Films for the Application in Neural Tissue Engineering

  • Gilson Khang (Department of Polymer·Nano Science and Technology, Chonbuk National University) ;
  • Jeon, Eun-Kyung (Department of Polymer·Nano Science and Technology, Chonbuk National University) ;
  • John M. Rhee (Department of Polymer·Nano Science and Technology, Chonbuk National University) ;
  • Lee, Ilwoo (Department of Neurosurgery, Catholic University Medical College) ;
  • Lee, Sang-Jin (Biomaterials Laboratory, Korea Research Institutes of Chemical Technology) ;
  • Lee, Hai-Bang (Biomaterials Laboratory, Korea Research Institutes of Chemical Technology)
  • 발행 : 2003.10.01

초록

In order to fabricate new sustained delivery device of nerve growth factor (NGF), we developed NGF-loaded biodegradable poly(L-lactide-co-glycolide) (PLGA, the mole ratio of lactide to glycolide 75:25, molecular weight: 83,000 and 43,000 g/mole, respectively) film by novel and simple sandwich solvent casting method for the possibility of the application of neural tissue engineering. PLGA was copolymerized by direct condensation reaction and the molecular weight was controlled by reaction time. Released behavior of NGF from NGF-loaded films was characterized by enzyme linked immunosorbent assay (ELISA) and degradation characteristics were observed by scanning electron microscopy (SEM) and gel permeation chromatography (GPC). The bioactivity of released NGF was identified using a rat pheochromocytoma (PC-12) cell based bioassay. The release of NGF from the NGF-loaded PLGA films was prolonged over 35 days with zero-order rate of 0.5-0.8 ng NGF/day without initial burst and could be controlled by the variations of molecular weight and NGF loading amount. After 7 days NGF released in phosphate buffered saline and PC-12 cell cultured on the NGF-loaded PLGA film for 3 days. The released NGF stimulated neurite sprouting in cultured PC-12 cells, that is to say, the remained NGF in the NGF/PLGA film at 37 $^{\circ}C$ for 7 days was still bioactive. This study suggested that NGF-loaded PLGA sandwich film is released the desired period in delivery system and useful neuronal growth culture as nerve contact guidance tube for the application of neural tissue engineering.

키워드

참고문헌

  1. Biomaterials v.20 X.Cao;M.S.Shoichet https://doi.org/10.1016/S0142-9612(98)00172-0
  2. J. Pharm. Sci. v.85 M.J.Mahoney;W.M.Saltzman https://doi.org/10.1021/js9601602
  3. Biomaterials v.20 F.J.Rodriguez;N.Gomez;G.Perego;X.Navarro https://doi.org/10.1016/S0142-9612(99)00055-1
  4. Brain Res. v.232 G.Lundberg;F.M.Longo;S.Varon https://doi.org/10.1016/0006-8993(82)90618-7
  5. Microsurgery v.10 M.Merle;A.L.Dellon;J.N.Cambell;P.S.Chang https://doi.org/10.1002/micr.1920100213
  6. Clin. Neurol. Nuerosurg. v.95 no.SUP H.Kerkhoff;F.G.Jennekens https://doi.org/10.1016/0303-8467(93)90045-I
  7. Cell Transplant. v.6 M.H.Tuszynski;K.Murai;A.Blesch;R.Grill;I.Miller https://doi.org/10.1016/S0963-6897(97)00021-3
  8. Brain Res. v.680 C.E.Krewson;M.L.Karlman;W.M.Saltzman https://doi.org/10.1016/0006-8993(95)00261-N
  9. Polymer(Korea) v.25 E.K.Jeon;H.J.Whang;G.Khang;I.Lee;J.M.Rhee;H.B.Lee
  10. Biomater. Res. v.5 E.K.Jeon;J.Y.Shim;H.J.Whang;G.Khang;I.Jo;I.Lee;J.M.Rhee;H.B.Lee
  11. J. Oral Maxillofac. Surg. v.45 J.O.Hollinger;J.P.Schmitz https://doi.org/10.1016/0278-2391(87)90269-2
  12. J. Bioeng. v.1 D.F.Williams;E.Mort
  13. J. Bone Joint Surg. v.73-A no.1 O.Bostman
  14. Tissue Eng. v.1 C.M.Agrawal;P.E.Gabriele;G.Niederauer;K.A.Athanasiou https://doi.org/10.1089/ten.1995.1.241
  15. Biotech. Bioeng. v.38 L.G.Cima;D.E.Ingber;J.P.Vacanti;R.Langer https://doi.org/10.1002/bit.260380207
  16. Polymer(Korea) v.23 G.Khang;J.H.Jeon;J.C.Cho;H.B.Lee
  17. Polymer(Korea) v.23 G.Khang;J.H.Jeon;J.C.Cho;J.M.Rhee;H.B.Lee
  18. Polymer(Korea) v.24 G.Khang;S.J.Lee;J.H.Jeon;J.H.Lee;H.B.Lee
  19. Polymer(Korea) v.24 S.J.Lee;G.Khang;J.H.Lee;Y.M.Lee;H.B.Lee
  20. Korea Polym. J. v.8 G.Khang;J.H.Lee;I.Lee;J.M.Rhee;H.B.Lee
  21. Korea Polym. J. v.9 G.Khang;M.K.Choi;J.M.Rhee;S.J.Lee;H.B.Lee;Y.Iwasaki;N.Nakabayashi;K.Ishihara
  22. Korea Polym. J. v.9 G.Khang;C.S.Park;J.M.Rhee;S.J.Lee;Y.M.Lee;I.Lee;M.K.Choi;H.B.Lee
  23. J. Biomater. Sci., Polym. Ed. v.13 S.J.Lee;G.Khang;Y.M.Lee;H.B.Lee https://doi.org/10.1163/156856202317414375
  24. J. Appl. Polym. Sci. v.85 G.Khang;C.W.Choee;J.M.Rhee;H.B.Lee https://doi.org/10.1002/app.10680
  25. Biomaterials v.23 Y.Iwasaki;S.Sawada;N.Nakabayashi;G.Khang;H.B.Lee;K.Ishihara
  26. Biomater. Res. v.6 J.S.Choi;S.J.Lee;G.Khang;I.Lee;H.B.Lee
  27. Korea Polym. J. v.7 J.C.Cho;G.Khang;J.M.Rhee;Y.S.Kim;J.S.Lee;H.B.Lee
  28. Korea Polym. J. v.8 G.Khang;J.H.Lee;J.W.Lee;J.C.Cho;H.B.Lee
  29. Polymer(Korea) v.24 J.C.Cho;G.Khang;H.S.Choi;J.M.Rhee;H.B.Lee
  30. Int. J. Pharn. v.234 H.S.Choi;G.Khang;H.Shin;J.M.Rhee;H.B.Lee https://doi.org/10.1016/S0378-5173(01)00968-1
  31. Polymer(Korea) v.26 H.Seong;D.Moon;G.Khang;H.B.Lee
  32. Polymer(Korea) v.26 T.K.An;H.J.Kang;J.S.Lee;H.Seong;J.K.Jeong;G.Khang;H.B.Lee
  33. Polymer(Korea) v.26 T.K.An;H.J.Kang;D.Moon;J.S.Lee;H.Seong;J.K.Jeong;G.Khang;H.B.Lee
  34. Macromol. Res. v.10 G.Khang;S.Seo;H.S.Choi;J.M.Rhee;H.B.Lee https://doi.org/10.1007/BF03218313
  35. Macromol. Res. v.11 J.S.Lee;G.S.Chae;T.K.An;G.Khang;S.H.Cho;H.B.Lee https://doi.org/10.1007/BF03218350
  36. J. Colloid Interface Sci. v.259 S.J.Lee;G.Khang;Y.M.Lee;H.B.Lee https://doi.org/10.1016/S0021-9797(02)00163-7
  37. J. Control. Release v.56 J.M.Pean;M.C. Venier-Julienne;F.Boury;P.Menei;B.Denizot;J.P.Benoit https://doi.org/10.1016/S0168-3659(98)00086-8
  38. J. Pharm. Sci. Tech. v.49 W.Lu;T.G.Park
  39. React. Polym. v.25 S.Cohen;L.Chen;R.N.Apte https://doi.org/10.1016/0923-1137(95)00043-I
  40. J. Control. Release v.45 F.Boury;H.Marchais;J.E.Proust;J.P.Benoit https://doi.org/10.1016/S0168-3659(96)01547-7
  41. Methods of Tissue Engineering G.Khang;H.B.Lee;A.Atala(ed.);R.Lanza(ed.)
  42. Biomedical Polymers G.Khang;H.B.Lee