Sequence Characteristics of xylJQK Genes Responsible for Catechol Degradation in Benzoate-Catabolizing Pseudomonas sp. S-47

  • Park, Dong-Woo (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Lee, Jun-Hun (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Lee, Dong-Hun (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Lee, Kyoung (Department of Microbiology, Changwon National University) ;
  • Kim, Chi-Kyung (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University)
  • Published : 2003.10.01

Abstract

Pseudomonas sp. S-47 is capable of degrading benzoate and 4-chlorobenzoate as well as catechol and 4-chlorocatechol via the meta-cleavage pathway. The three enzymes of 2-oxopenta-4-enoate hydratase (OEH), acetaldehyde dehydrogenase (acylating) (ADA), and 2-oxo-4-hydroxypentonate aldolase (HOA) encoded by xylJQK genes are responsible for the three steps after the meta-cleavage of catechol. The nucleotide sequence of the xylJQK genes located in the chromosomal DNA was cloned and analyzed. GC content of xylJ, xylQ, and xylK was 65% and consisted of 786, 924, and 1,041 nucleotides, respectively. The deduced amino acid sequences of xylJ, xylQ, and xylK genes from Pseudomonas sp. S-47 showed 93%, 99%, and 99% identity, compared with those of nahT, nahH, and nahI in Pseudomonas stutzeri An10. However, there were only about 53% to 85% identity with xylJQK of Pseudomonas putida mt-2, dmpEFG of P. putida CF600, aphEFG of Comamonas testosteroni TA441, and ipbEGF of P. putida RE204. On the other hand, the xylLTEGF genes located upstream of xylJQK in the strain S-47 showed high homology with those of TOL plasmid from Pseudomonas putida mt-2. These findings suggested that the xylLTEGFIJQK of Pseudomonas sp. S-47 responsible for complete degradation of benzoate and then catechol via the meta-pathway were phylogenetically recombinated from the genes of Pseudomonas putida mt-2 and Pseudomonas stutzeri An10.

Keywords

References

  1. Microbiology v.146 Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441 Arai,H.;T.Ohishi;M.Y.Chang;T.Kudo
  2. Appl. Environ. Microbiol. v.64 Construction and use of an ipb DNA module to generate Pseudomonas strains with constitutive trichloroethene and isopropylbenzene oxidation activity Berendes,F.;N.Sabarth;B.Averhoff;G.Gottschalk
  3. Gene v.245 Complete nucleotide sequence and evolutionary Significance of a chromosomally encoded naphthalene-degradation low pathway from Pseudomonas stutzeri AN10 Bosch,R.;E.Garcia-Valdes;E.R.B.Moore https://doi.org/10.1016/S0378-1119(00)00038-X
  4. Appl. Environ. Microbiol. v.55 The TOL(pWW0) catabolic plasmid Burlage,R.S.;S.W.Hooper;G.S.Sayler
  5. J. Bacteriol. v.178 p-Cumate catabolic pathway in Pseudomonas putida F1: Cloning and characterization of DNA carrying the cmt operon Eaton,R.W.
  6. Biodegradation v.9 Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: Nucleotide sequence analysis of the ipb operon nd neighboring DNA from pRE4 Eaton,R.W.;O.V.Selifonova;R.M.Gedney https://doi.org/10.1023/A:1008386221961
  7. EMBO J. v.15 Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: A spiral fold defines the CoA-binding pocket Engel,C.K.;M.Mathieu,J.P.Zeelen;J.K.Hiltunen;R.K.Wierenga
  8. Microbiology v.143 Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA Fujii,T.;M.Takeo;Y.Maeda https://doi.org/10.1099/00221287-143-1-93
  9. Mol. Gen. Genet. v.221 The meta clevage operon of TOL degradative plasmid pWW0 comprised 13 gene Harayama,S.;M.Rekik https://doi.org/10.1007/BF00280375
  10. Arch. Microbiol. v.171 Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway) He,Z.;J.C.Spain https://doi.org/10.1007/s002030050715
  11. Gene v.144 The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes Hofer,B.;S.Backhaus;K.N.Timmis https://doi.org/10.1016/0378-1119(94)90196-1
  12. Mol. Microbiol. v.5 DNA sequence determination of the TOL plasmid (pWW0) xylGFJ genes of Pseudomonas putida Horn,J.M.;S.Harayama;K.N.Timmis https://doi.org/10.1111/j.1365-2958.1991.tb02091.x
  13. J. Microbiol. v.36 Cloning and expression in E. coli of the genes responsible for degradation of 4-chlorobenzoate and 4-chlorocatechol from Pseudomonas sp. strain S-47 Kim,K.P.;D.I.Seo;L.Y.Kim;C.K.Kim
  14. J. Microbiol. Biotechnol. v.11 Identification of Yarrowia lipolytica Y103 and Its degradability of phenol and 4-chlorophenol Lee,J.S.;E.J.Kang;M.O.Kim;D.H.Lee;K.S.Bae;C.K.Kim
  15. J. Microbiol. Biotechnol. v.11 Cloning and phylogenetic analysis of two different bphC genes and bphD gene from PCB-degrading bacterium, Pseudomonas sp. strain SY5 Na,K.;S.Kim;M.Kubo;S.Chung
  16. Mol. Cells v.10 Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp.S-47 Noh,S.J.;Y.Kim;K.H.Min;T.B.Karegoudar;C.K.Kim
  17. J. Bacteriol. v.172 Complete nucleotide sequence and pplypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600 Nordlund,I.;J.Powlowski,V.Shingler
  18. J. Microbiol. v.38 Cloning and nucleotide sequence analysis of xylL gene responsible for 4CBA-dihydrodiol dehydrogenase from Pseudomonas sp.S-47 Park,D.W.;Y.Kim;S.M.Lee;J.O.Ka;C.K.Kim
  19. J. Biochem. Mol. Biol. v.35 Chloroplast-type ferredoxin involved in reactivation of catechol 2,3-dioxygenase from Pseudomonas sp.S-47 Park,D.W.;J.C.Chae;Y.Kim;T.Iida;T.Kudo;C.K.Kim https://doi.org/10.5483/BMBRep.2002.35.4.432
  20. Kor. J. Microbiol. Biotechnol. v.30 Cloning and nucleotide sequence analysis of xylG gene encoding 5C-2HMS dehydrogenase from Pseudomonas sp.S-47 Park,S.I.;D.H.Lee;Y.Kim;K.Lee;C.K.Kim
  21. J. Bacteriol. v.184 Cross-regulation between a novel two-component signal transduction system for catabolism of toluene in Pseudomonas mendocina and the TodSt system from Pseudomonas putida Ramos-Gonzalez,M.I.;M.Olson;A.A.Gatenby;G.Mosqueda;M.Manzanera;M.J.Campos;S.Vichez;J.L.Ramos https://doi.org/10.1128/JB.184.24.7062-7067.2002
  22. J. Microbiol. Biotechnol. v.11 Genetic and biochemical characterization of the biphenyl dioxygenase from Pseudomonas sp. strain B4 Rodarie,D.;Y.Jouanneau
  23. Molecular Cloning: A Laboratory Manual(3rd ed.) Sambrook,J.;E.F.Fritisch;T.Maniatis
  24. J. Microbiol. Biotechnol. v.8 A pathway for 4-chlorobenzoate degradation by Pseudomonas sp. S-47 Seo,D.I.;J.C.Chae;K.P.Kim;Y.S.Kim;K.S.Lee;C.K.Kim
  25. J. Mol. Biol. v.255 Three-dimensional structure of free form and two substrates complexes of extradiol ring-cleavage type dioxygenase, the bphC enzyme from Pseudomoans sp. strain KKS102 Senda,J.K.;H.Sugiyama;T.Narita;K.Yamamoto;M.Kimbara;M.Fukuda;M.Sato;M.Yano;Y.Mitsui https://doi.org/10.1006/jmbi.1996.0060
  26. J. Bacteriol. v.174 Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600 Shingler,V.;J.Powlowski,U.Marklund
  27. Microbiology v.144 Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways Sirinun,A.;P.A.Williams https://doi.org/10.1099/00221287-144-5-1387
  28. Nucleic Acids Research v.24 The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools Thompson,J.D.;T.J.Gibson,F;Plewniak,F;Jeanmougin;D.G.Higgins
  29. J. Bacteriol. v.184 A third transposable element, ISPpu12, from toluene-xylene catabolic plasmid pWW0 of Pseudomonas putida mt-2 Williams,P.A.;R.M.Jones;L.E.Shaw https://doi.org/10.1128/JB.184.23.6572-6580.2002