Mitigation of Harmful Algal Blooms by Sophorolipid

  • Published : 2003.10.01

Abstract

A new method was proposed to control Harmful Algal Blooms (HABs) by a biosurfactant sophorolipid. The effect of sophorolipid on the growth, motility, precipitation, and recovery of algal cells was investigated for four common HAB species, Scripsiella trochoidea, Prorocentrum minimum, Cochlodinium polykrikoides, and Heterosigma akashiwo. The motility and growth of algal cells were inhibited significantly at the concentration of 20 and 5 mg/l sophorolipid, respectively, and no recovery was observed under the above concentrations. The concentration of 20 mg/l sophorolipid was considered to be an effective concentration for the mitigation of HABs. A sedimentation test suggested that the maximum precipitation occurred at the end of 1 h, and the algicidal effect of sophorolipid was observed by a microscope. Comparative study showed that sophorolipid had marked algicidal capability. Analysis on biodegradability, toxicity, and cost effectiveness further demonstrated the potential of sophorolipid in future HABs mitigation.

Keywords

References

  1. Nature v.38 Turning back the harmful red tide Anderson,D.M. https://doi.org/10.1038/038513a0
  2. Umweltbundesamt der Bundesrepublik Deutschland, Meereskundliche Untersuchung von Olunfallen, Texte 6/87 Bernem,K.H.V.
  3. Umweltbundesamt der Bundesrepublik Deutschland, Meereskundliche Untersuchung von Olunfallen, Texte 6/87 Bernem,K.H.V.
  4. Biotechnol. Lett. v.20 Production of sophorolipid in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC22214 and Cryptococcus curvatus ATCC20509 Daniel,H.J.;M.Reuss;C.Syldatk https://doi.org/10.1023/A:1005332605003
  5. Bioresource Technol. v.54 Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat Deshpande,M.;L.Daniels https://doi.org/10.1016/0960-8524(95)00116-6
  6. Enzyme Microb. Tech. v.25 Unstructured kinetic model for sophorolipid production by Candida bombicola Garcia-Ochoa,F.;J.A.Casas https://doi.org/10.1016/S0141-0229(99)00089-7
  7. Can. J. Microbiol. v.8 Studies of marine planktonic diatoms Guillard,R.R.L.;J.H.Ryther https://doi.org/10.1139/m62-029
  8. New Phytol. v.128 Acclimation of photosystem II in a cyanobacterium and a eukaryotic green alga to high and fluctuating photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes Ibelings,B.W.;B.M.Kroon;L.R.Mur https://doi.org/10.1111/j.1469-8137.1994.tb02987.x
  9. J. Microbiol. Biotechnol. v.12 Characteristics of sophorolipid as an antimicrobial agent Kim,K.J.;D.S.Yoo;Y.B.Kim;B.S.Lee;D.H.Shin;E.K.Kim
  10. Kor. J. Biotechnol. Bioeng. v.8 Studies on the test methods of surfactant biodegradation Kim,Y.H.;H.K.Jung;T.I.Yoon;E.K.Kim
  11. Fat. Sci. Technol. v.91 Antimicrobial effects of biosurfactants Lang,S.;E.Katsiwela;F.Wagner
  12. Biosurfactants : Production·Properties·Applications v.48 Biological activities of biosurfactants Lang,S.;F.Wagner;Naim Kosaric(ed.)
  13. Biotech. Bioproc. Eng. v.6 Effect of light/dark cycles on wastewater treatments by microalgae Lee,K.;C.G.Lee https://doi.org/10.1007/BF02932550
  14. Eng. Geol. v.60 Surfactant-enhanced remediation of contaminated soil : A review Mulligan,C.N.;R.N.Yong;B.F.Gobbs https://doi.org/10.1016/S0013-7952(00)00117-4
  15. J. Antibiot. v.43 Pumilacidin, a complex of new antiviral antibiotics: Production, isolation, chemical properties, structure and biological activity Naruse,N.;O.Tenmyo;S.Kobaru;H.Kamia;T.Miyaki;M.Konishi;T.Oki https://doi.org/10.7164/antibiotics.43.267
  16. Gene v.199 Cloning and sequence analysis of cDNAs encoding plant cytosolic malate dehydrogenase Ocheretina,O.;R.Scheibe https://doi.org/10.1016/S0378-1119(97)00361-2
  17. J. Korean Fish. soc. v.31 Changes of bacterial population during the decomposition process of red tide dinoflagellate, Cocholodinium polykrikoides in the marine sediment addition of yellow loess Park,Y.T.;W.J.Lee
  18. Ind. Crop Prod. v.13 Sophorolipids: A source for novel compounds Rau,U.;S.Hammen;R.Heckmann https://doi.org/10.1016/S0926-6690(00)00055-8
  19. Appl. Microbiol. Biotechnol. v.52 High-and low-molecular-mass microbial surfactants Rosenberg,E.;E.Z.Ron https://doi.org/10.1007/s002530051502
  20. J. Microbiol. Biotechnol. v.9 Cyanobacterial toxins:The current status Tyagi,M.B.;J.K.Thakur;D.P.Singh;Arvind Kumar;E.G.Prasuna;Ashok Kumar
  21. Ocea Limnol. Sin. v.24 The chemical means of controlling red tides Yu.Z.M.;J.Jou;Z.X.Ma;Q.S.Li
  22. Chin. Sci. Bull. v.44 Clay surface modification and its coagulation of red tide organisms Yu,Z.M.;X.X.Sun;X.X.Song;B.Zhang https://doi.org/10.1007/BF03182721
  23. Oil Sand and Oil Shale Chemistry Zajic,J.E.;D.F.Gerson;O.P.Strausz(ed.);E.M.Lown(ed.)