Exterior Acoustic Holography Reconstruction of a Tuning Fork Using Inverse Non-singular BEM

  • Jarng, Soon-Suck (Dept. of Information Control & Instrumentation, Chosun University)
  • 발행 : 2003.03.01

초록

Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near field pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used for the initial exterior pressures which are at first calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is, used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 ㎐ resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

키워드

참고문헌

  1. J. D. Maynard, E. G. Williams and Y. Lee, 'Nearfield acoustic holography; I. Theory of generalized holography and the development of NAH,' J. Acoust. Soc. Am., 78 (4), 1395-1413, 1985 https://doi.org/10.1121/1.392911
  2. W. A. Veronesi and J. D. Maynard, 'Nearfield acoustic holography; II. Holographic reconstruction algorithms and computer implementation,' J. Acoust. Soc. Am., 81 (5), 1307-1322, 1987 https://doi.org/10.1121/1.394536
  3. W. A. Veronesi and J. D. Maynard, 'Digital holographic reconstruction of source with arbitrary shaped surfaces,' J. Acoust. Soc. Am., 85 (2), 588-598, 1989 https://doi.org/10.1121/1.397583
  4. K. Gardner and R. J. Bernhard, 'A noise source identification technique using an inverse Helmholtz integral equation method,' Trans. ASME, J. Vib. Acoust. Stress Reliab. Des., 110, 84-90, 1988 https://doi.org/10.1115/1.3269485
  5. H. Allik and T. J. R. Hughes, 'Finite element method for piezoelectric vibration,' Inf. J. Numer. Method Eng., 2, 151-157, 1970 https://doi.org/10.1002/nme.1620020202
  6. L. G. Copley, 'Integral equation method for radiation from vibrating bodies,' J. Acoust. Soc. Am., 41, 807-816, 1967 https://doi.org/10.1121/1.1910410
  7. L. G. Copley, 'Fundamental results concerning integral representations in acoustic radiation,' J. Acoust. Soc. Am., 44, 28-32, 1968 https://doi.org/10.1121/1.1911072
  8. E. Skudrzyk, 'The foundation of acoustics,' Springer-Verlag, New York, Equation (76), 408-409, 1971
  9. D. T. I. Francis, 'A boundary element method for the analysis of the acoustic field in three dimensional fIuidstructure interaction problems,' Proc. Inst. of Acoust., 12, Part 4, 76-84, 1990
  10. H. A. Schenck, 'Improved integral formulation for acoustic radiation problems,' J. Acoust. Soc. Am., 44, 41-58, 1968 https://doi.org/10.1121/1.1911085
  11. A. J. Burton and G. F. Miller, 'The application of integral integration methods to the numerical solutions of some exterior boundary problems,' Proc. R. Soc. London, Ser., A 323, 201-210, 1971 https://doi.org/10.1098/rspa.1971.0097
  12. R. F. Kleinman and G. F. Roach, 'Boundary integral equations for the three dimensional Helmholtz equation,' SIAM Rev., 16, 214-236, 1974 https://doi.org/10.1137/1016029
  13. D. T. I. Francis, 'A gradient formulation of the Helmholtz integral equation for acoustic radiation and scattering,' J. Acoust. Soc. Am., 93 (4) Part 1, 1700-1709, 1993 https://doi.org/10.1121/1.406735