Abstract
Using a wind tunnel testing, the aerodynamic load characteristics of an elliptic airfoil was described. The experimental data was obtained for angles of attack $-20^{\circ}$ to $+20^{\circ}$ with $2^{\circ}$ increments at a chord Reynolds number of $0.99{\times}105$ and $2.48{\times}105$. For each test case, chordwise suction pressure distributions and wake surveys were obtained. Static pressure measurements were made over a 10 sec averaging time at a 10 Hz sampling rate. For each case, wake survey was conducted with a pilot-static probe at 1.0c downstream from the trailing edge at very fine spacing to resolve the wake velocity deficit profile. As can be expected, suction pressure coefficient was increased with angle of attack. The normal force, CNmax, appeared peak value at the incidence angle of $12^{\circ}~14^{\circ}$, and the significant increase in profile drag at this range of angles of attack.