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LIMIT OF SOLUTIONS OF A SPDE DRIVEN BY
MARTINGALE MEASURE WITH REFLECTION

NHANSOOK CHO AND YOUNGMEE KwWON

ABSTRACT. We study a limit problem of reflected solutions of par-
abolic stochastic partial differential equations driven by martingale
measures. The existence of solutions is found in an extension of the
work with respect to white noise by Donati-Martin and Pardoux
[4]. We show that if a certain sequence of driving martingale mea-~
sures converges, the corresponding solutions also converge in the
Skorohod topology.

1. Introduction

In this paper, we study a limit problem of reflected solutions of para-
bolic stochastic partial differential equations(SPDEs) driven by martin-
gale measures. C. Donald-Martin and E. Pardoux [4] studied reflected
solutions of parabolic SPDEs driven by a space time white noise and
their results are the motivation of this research. Readers may refer re-
cent studies and short history on this subject to [4].

We briefly introduce the main result of [4]. Suppose that ug is a
positive continuous function on [0, 1] which vanishes at 0 and 1. Let W
be a usual space-time white noise then there is a continuous process, u
on [0,1] x R4 and a random measure 1 on [0, 1] x R4 which satisfy

(1) u is a continuous process on [0, 1] X Ry .; u(z, t) is F;— measurable
and u(z,t) > 0 a.s.

(2) n((0,1) x {t}) = O,I(f fol z(1 —z)n(dz, ds) < oo, for all t > 0, and
for any measurable mapping ¢ : [0,1] x Ry — R, fot fol #(z, s)n(dz, ds)
is Fi-measurable.
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(3) (u,n) solves the parabolic SPDE.

(1.1)
6u(8wt,t) B 8215(:1:2, t) + f(u(z,t)) = o(u(z, t))W(z,t) + n(z,1)
u(:,0) = uo; u(0,¢) = u(1,t) =0,
{5

in the following sense ((-,-) denotes the scalar product in L[0, 1}): for
any t € Ry, ¢ € C?(0,1] with ¢(0) = #(1) =0,

t

(u(z,1), (= )>+/ (u(z,5),¢"(z )>d8+/< f(u(z, 5)), d(z))ds

— (40, 6 //¢ )W (da, ds)
//¢ n(dz,ds) as.

where f and o are globally Lipschitz.

(4) fg fR+ udn = 0.

We say that the reflected parabolic equation(RPE) has a solution
(u,n) if the pair (u,n) satisfies (1), (2), (3) and (4).

Now we consider a sequence of orthogonal martingale measures, {M™}
which converges in distribution to W in the Skorohod topology on D (g)
[0, T], where S’(R) is the dual of Schwartz space and Ds(g)[0,T] is the
Skorohod space. It is the space of all functions f : [0,1] — S’'(R) which
are right continuous and have left limits at each ¢ € [0,7]. Consider the
following equation:

(1.2)
u™ (x 2,,M
et TR 4 fur (e, 1) = o (@ )M (2,0) +77(z,)
u™(+,0) = up; u™(0,t) = uw™(1,t) = 0.

See in detail [2] or [10] for the definition of orthogonal martingale mea-
sure. It is easily proved that under the Condition M2 in section 2, there
is a solution, (u™,n™) of (1.2) which satisfies the corresponding (1), (2),
(3) and (4). Since the proof is similar with the proof of the existence
of solution to (1.1) (see Theorem 4.1 in [4]) and we focus on the limit
behavior of solution sequence, we do not want to present that proof in
this paper.

We are going to show that under certain conditions (u™,7™) = (u,n)
in the Skorohod topology on D¢io,1)[0, T] X Ds(ry[0,1], for any T > 0.
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2. Existence and uniqueness, and a comparison theorem

Let R = (—o00,00) and Ry = (0,00) as usual. The coefficients f and
o in equation (1.2) are measurable functions from [0,1] x @ x Ry X R
into R which satisfy the following conditions:

ConpITION C.

(Cl) f(z,w,t;0) =0.

(C2) f and o are Lipschitz such that for each T' > 0, M > 0 there
exists a constant C(T) satisfying

[f(@,w,t;2) = f(z,w,t;7)] + |o(z,w, 8 2) — o(z,w,t;7)| < C(T)]z — 7],
for all (z,w,t) € (0,1) x 2 x (0,T), 2,7 € [-M, M].
(C3) For each T' > 0 there exists a constant C(T') satisfying
[f(@,w,t; 2)| + [o(z,w,t; 2)] < C(T)(L + |z),
for all (z,w,t,2) € (0,1) x Q x (0,T) x R.

We shall write f(u(z,t))(resp.o(u(z,t)) instead of f(z,w,t;u(z,t))
(resp. o(z,w,t;u(z,t))). Let M be a continuous orthogonal martingale
measure and consider the parabolic equation:

(2.1)
Ou(z,t)  0%u(zx,t)

u(+,0) = up; u(0,t) = u(1,t) = 0.

If M satisfies a certain condition as following Condition M1, adapting
the method of Walsh [10] we can easily show that (2.1) has a unique
cadlag adapted process which satisfies: for any ¢t € Ry, ¢ € C?[0,1]
with ¢(0) = ¢(1) =0,

(U(I,t)7¢($)>+/0 (u(fB,S),A¢(m)>d8+/0 (f(u(z, s)), p(z))ds
t ol
= (u0,¢)+/0 /0 d(z)o(u(x,s))M(dz,ds) a.s. ,

where A = —6%2;. Equivalently u(z,t) satisfies the integral equation

w(z, ) = /0 wo(y)Ge(z, y)dy — /0 /0 F(u(y, $))Gres(z — y)dyds
+ / /0 o (u(y, 3))Gi—s (2, ) M (dy, ds),
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where G is the Green’s function associated to the operator 66—; with
Dirichlet boundary conditions. Several authors have shown that (2.1)
has a unique continuous solution([6], {7]).

Let M be a martingale measure and 7 (dz, dy) be its covariance mea-
sure.

CONDITION M1. We assume that there exists a nonnegative bounded
function, h(z) on [0, 1] such that

m(dz,ds) = h(z)dzds.

NOTATION. Let du = h(z)dz and Ly([0, 1], du) be the Hilbert space
of real valued du-square integrable functions on [0,1]. For any func-
tion f let f* = max{f(z),0}, f~ = —min{f(z),0} and ||f(‘)|lcc =
SUPze(o,1] |f(z)]-

The following theorems are modifications of Theorem 2.1 and Theo-
rem 3.1 in [4].

THEOREM 2.1. Let ug be as before and suppose that f, o satisfy Con-
dition C. Also assume that M satisfies the condition M1. Then equation
(2.1) has a unique continuous and F; adapted solution {u(z,t);0 < z <
1,¢ > 0}.

THEOREM 2.2. Let M be a martingale measure satisfying Condition
M1 and let two pairs of coefficients f,o and g,0 be globally Lipschitz
with f > g. We denote by u (resp. v) the solution of (2.1) corresponding
to f (resp. g) with the same initial condition. Then, a.s., for all (z,t) €
[07 1] X R-i-’

u(z,t) < v(z,t).

PRrOOF. Let {ex} be an orthonormal basis of Lo ([0, 1], du) such that
llexlloo < C forall k=1,2,.... We let

M* ———/Ot/olek(a;)M(dx,ds).

Then {M*} is a family of mutually independent martingale processes. If
we follow the arguments of the proof of Theorem 2.1 [4] under Condition
M1, we can get the result applying the generalized Ito’s formula in [9].00
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3. The convergence of {u"}

Let M", mn=1,2,... be orthogonal martingale measures whose co-
variance measure, (M, (dz,ds)) = n,(dz,ds) satisfy the following Con-
dition M2.

ConDITION M2. For eachn =1,2,..., there exists a h,(z) : [0,1] x
R, — R such that for each T' > 0

mn(dx,ds) = hp(z)dzds, sup sup h,(z) < co.
n zel0,1]

Let uf (resp. ug) be a positive continuous function on [0, 1] such that
ug(0) = ug(1) = 0 (resp. up(0) = up(1) = 0). We consider the following
penalized SPDEs: for n =1,2,....

oul(z,t) B BPul(z, t)
ot O0x?

+ flud(z,1))

(3:1) — o(ul(z, 1)) My (dz, df) + - (u(z, 1))~
ue (5 0) = ug;uf (0,t) = Uz(l»t) =0,
Oudsl) _ Oudnl) | plun(a,)
(32) = o{uclz, )W (d, ) + = (uc(z, 1)
e+, 0) = g ue(0, ) = ue(1,4) = 0,
where (u7 (¢, )~ = ~min{u?(z,t),0}. For cach n = 0,1,... and ¢ > 0,

(3.1) (resp. (3.2)) admits a unique solution u” (resp. u.) which satisfies
that v, < u? a.s. for € < ¢ by Theorem 2.2.
We consider a version of the Kolmogorov Lemma.

KoLMOGOROV LEMMA [4]. Let A be a cube in R" and {X,, o € A}
be a real valued stochastic process. Suppose there exist constants k >
1, K > 0 and € > 0 such that

E(lXo — Xpl"] < Kla— p|"*.

Then
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(1) X has a continuous version,
(2) there exist constants a and vy, depending only on n,k and €, and
a random variable Y such that a.s., for all o, 8 € R?,

2
)%,

£ Y
'Xa_Xﬁl _<_YIC¥‘—/8| (lOg |a——ﬂ|

and
E[Y*] < aK.

THEOREM 3.1. If f, o satisfy Condition C and {M,} satisfies Con-

dition M2, then for each fixed ¢ > 0, {ul'} is relatively compact in
Dcio,1[0,T].

PROOF. To show the relative compactness of {u?}, we show that for
any fixed T > 0,

sup E(sup ||uz (-, s)||%,) < oo, for some p > 0.
n s<T

Let 1
F.(2) = f(z) — ;z‘, for z € R,

then the solution of (3.1) satisfies the following:
1 t 1
et = [ @i ndy- [ [ Fu9)Ge (e vdyds
0 0
/ / $))Ge_o(, y) M (dy,ds).

For (z,t) € [0,1] x Ry, letting p > 6, % + % =1,r= 1% < 3, we get
for some constant C

Efjug (z,1)"]

<] / W () Gelz, y)dyl?

/ / Gi_,(w,y)dyds) s / / |Fe(y, s, ug)[Pdyds]
/ / Gi_(z,y)mn(dy, ds)) E/ / lo(z, s, ul)|Pmn(dy, ds)],
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and since 7 < 3, fo fo (z,y)dyds < oo(see [10]). By the assump-
tions on f and o, we deduce that for some constant C.(t),

E(ju2(z, ") < Co(t)(1 + E /0 sup [u™(y, r)[Pds).

y,r<s
Also, by the computations made in Corollary 3.4 [10], we can get the
following; for p > 6, 5,t <T
(3.5)
E“u?(x» t) - u?(y’ s)lp]

< CUD)(@1) — (0, )P+ E /0 "(sup [l (z,0)Pdr).

2,0<r
Choosing p > 20, by the Kolmogorov lemma, we can find a random
variable Y., such that

lug(z,t) — ul (y, s)|P < Y;T,lpl(m’t) (y,s )l (log (m))2
and
69 BOGYISeKO+E | sup )P,

Choosing s = 0,y = 0 in (3.5), we deduce by the Lemma that for any
T > 0 there exists Ce r( independently of n) such that

T
B(sup [u2(@,5)") < Cer(+ ([ sup [uZ(w,)Pds)).
0

z,s<T y,r<s

Applying Gronwall’s lemma and letting Mr(e) = Ce - €T "Cer

sup B[ sup [ug(z,s)|"] < Mr(e).

z,s<T

, we have

To show the other criteria of relative compactness of {u?} (for any
fixed €), for 0 <s<t<T,|t—s| <4,

lug (z,t) — ul (z, s)|P

<| / / )Gys(x, y)dyds

/ / 8))Gi—s(z,y)W(dy, ds)dzds|P

< af / /0 GL (e, ndyds)¥ | t / |Fu(ul (0, 9))Pdyds
o[ [ = [ [ oz, oras,
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for some constant C, where ;1) + % =1 r= p%pz < 3, and hence all

integrals in the above right hand side are finite. Then as before, there
exists a constant C. such that

Bllu (1) —u (- 9)I5 73] < E[C(1+ S [lue (s 9)1%)01 7).

Let ~
Yr(6) = Ce(1+ sup |[lug(,s)[%)d.
0<s<T

Then
lim sup Ely;(8)] = 0.

Hence for each (fixed) € > 0, {ul'} is relatively compact in D¢(g 1[0, T
by Theorem 3.8.6 [5]. O

Let u. be a limit of {u”}. Then wu. is the unique solution of the
penalized SPDE, (3.2). (The uniqueness of solution of (3.2) is well known
in [4, Theorem 3.1})

THEOREM 3.2. If f, o satisfy Condition C and {M,} satisfies Con-
dition M2, and u be the solution of (1.1). Suppose M, = W in the
Skorohod topology on Dg/(g)[0,T), then u? = u in the Skorohod topol-
ogy on D¢ 1)[0,T] as n — oo and then € — 0.

PRroOOF. Note that u” solves the SPDE, (3.1) in the following sense :
for any t € Ry, ¢ € C([0,1] x Ry)
¢ t
(ug(2,2), ér) +/ (Ads, u (z, 5))ds +/ (f(ug(z,5)), &s)ds
0 0
t ol
38) = @060+ [ [ otur(es)(w,5)M" (da,ds)
o Jo
| S _
2 [ (@) odsas,

where ¢;(-) = ¢(-,s). All the terms on the left-hand side of (3.8) con-
verge in distribution as n — co. Also applying Theorem 2.1 [2],

// (z,38))ps(z)M™(dz, ds)

= // “(x,8))ps(x)W (dz, ds)
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as n — 0o. We denote n?(dz,dt) = (u?(z,t)) " dzdt on [0,1] x Ry. By
the above theorem, we can see that there exists a positive distribution
Ne, Ne(dz, dt) = 2 (ue(z,t))dzdt such that

t t
< | etomra.an = 2 [ @ (e,

as m — oo since 7] is a positive distribution.

Since the unique existence of limit of u. as € — 0 is already known
in [4], set v = lim._,ou® = limsup,_,,u¢ a.s.. Then all the terms of
- (3.8) except the last one converge in distribution as € — 0. Hence we
deduce that ne converges toa positive distribution, say n on [0,1] x Ry

and L [T(ul(s)™, ¢s)ds = [ ds(a)ns(d, dt) as € — 0. Therefore for all
t> 0 and ¢ e C°°([O 1] x R4), u(t) satisfies the following;
(3.9)

t t
(ua, ), d(a, ) + /O (A(z, 5), u(z, 5))ds + /O S (ulz, 5)), B(z, 5))ds

= (uo, $o) +/0t/010(u(a:, s))o(z, s)W(dx, ds)
+ /Ot /01 o(z, s)n(dz, ds)

O

THEOREM 3.3. Let u",n = 1,2,... be the solution of (1.2). Then
for any T' > 0,

u"' = u in DC[O,I] [O,T],
where u is the solution of (3.9).

Proor. First, we want to show for any n and 0 <t < T

sup Ef[jud (1) = u™(-,1)]|o] — 0,

as € — 0. Let 97 be the solution of

a_vb(___l + AT (x,t) = o(ug (z,t)) My (dz, dt)

(3.10) 0 (-, 0) = uo; U2 (0, t) = o2(1,t) =0,
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and 7" be the solution of the following:

% + AT (3,8) = o(u™(z, 1)) M, (dz, dt)

(3.11) "(-,0) = up; 0"(0,t) = 0"(1,t) = 0.
Let 27 = u? — 97, 27 be the solution of

Bzea(:% ) + A2+ f(22+07) = ;(Zen(ﬂf,t) + 7z, 1))

(3.12) 22(-,0) = 0;22(0,t) = 27 (1,t) = 0,

€

and Z? be the solution of the following:

oz ,t =1,€ —n
(3.13) %:E_) + AZ7(z,t) + f(B+07) =0

zZ2(-,0) =0;22(0,t) = 22(1,t) = 0,

where f.(r) = f(r) — %r‘.
Since ||o7(-,t) — "(-, t)|loo = |Z27(-,t) — 22(-,1)||co by the same argu-
ment of (13) in [8], we have

(3.14)
[l (- 2) = u" (-, B)loo
SNTEC ) =T loo + 11280 8) = 27 (5 D)lloo + (128 (1 8) — 28, ) lloo
< 20198 (1) = 0" (5 oo + 128 8) — 27 ( D) lloo

Observing (3.10)-(3.13), we see that

n __ zn =N
€ e+v

|

solves
UY) | aar(a,t) + (@2 (z,)
(3.15) ot X
= o(u"(z,t)) M, (dz, dt) + Z(ﬂ?(m,t))'.

It was shown in [8] that the solution of (3.15) converges as € tends to 0 to
a (continuous) function @” on [0,1] x [0,7]. So z* converges uniformly
to a continuous function z". Note that 27 = u? — 02 and |20 — 20 ]||co <
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[7™ — ©7||co. By Lemma 6.2 of [4], we have E[||7" — 02||oo] — 0. Hence
(3.14) - 0 as. as e — 0.
The next step was also used to prove a limit,(4.6) in [3]. Since u. is
continuous, whenever ¢, € [0,1],n =1,2..., limy,o0 t, =¢
(3.16)
llwg (-, tn) = u™ (5 B)lloo
< g (5 tn) = e )lloo + lfue(st) — w2 (D) lloo + llud (1) — u" (5 8)lloo
— 0, a.s.

as n — oo and € — 0. Since for each €, u? = u. as n — o0 and u. = u
as € — 0 according to Theorem 4.1 [4], by Proposition 3.6.5. [5] and
Theorem 1.4.2 [1] (3.16) implies that

u™ = u  in the Skorohod topology on D¢y [0, T].
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