ON THE SPECTRUM OF THE RHALY OPERATORS ON bv_0

MUSTAFA YILDIRIM

ABSTRACT. In 1989, Rhaly [4] determined the spectrum of Rhaly operator R_a on the Hilbert space ℓ_2 . In this paper Authors determine the spectrum of the Rhaly matrix R_a as an operator on the space bv_0 with assumption $0 < L = \lim_n (n+1)a_n < \infty$.

1. Introduction

Given a scalar sequence of $a=(a_n)$, a Rhaly matrix $R_a=(a_{nk})$ is the lower triangular matrix where $a_{nk}=a_n$ for $k\leq n$ and $a_{nk}=0$ for n,k otherwise.

 c_0 , bv, bv_0 and bs; will denote the space of null sequence, sequences x such that $\sum_k \mid x_k - x_{k-1} \mid < \infty$, $bv_0 = bv \cap c_0$, sequences x such that $\sup_{n \geq 0} \mid \sum_{k=0}^n x_k \mid < \infty$ respectively. From [5, formula 119], $A:bv_0 \to \overline{b}v_0$ if and only if

$$\lim_{n} a_{nk} = 0 \quad \text{for all} \quad k$$

and

(1.2)
$$||A||_{bv_0} := \sup_{N} \sum_{n} \left| \sum_{k=0}^{N} (a_{nk} - a_{n-1,k}) \right| < \infty.$$

For $a = (\frac{1}{n+1})$, the spectra of the Cesàro matrix on bv_0 are studied by Okutoyi [2]. In [4] taking $L = \lim_n (n+1)a_n$ Rhaly showed that R_a is a bounded operator on the Hilbert space ℓ_2 of square summable sequences, and he also determined its spectrum as

$$(\sigma(R_a, \ell_2) = \{ \lambda : | \lambda - L | < L \} \cup \{ a_n : n = 0, 1, 2, \ldots \}).$$

Received March 16, 2001.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B37; Secondary 47B38, 40G99, 47A10.

Key words and phrases: Rhaly operator, Cesàro operator, spectrum and point spectrum.

In this paper, we assume that (a) $L = \lim_n (n+1)a_n$ exists, finite, and nonzero, (b) $a_n > 0$ for all n, (c) (a_n) is monotone decreasing sequence, (d) $S := \{a_n : n = 0, 1, 2, \dots\}$. We represent the set of eigenvalues of the Rhaly matrix R_a and the spectrum of R_a on the Banach space bv_0 by $\pi_0(R_a, bv_0)$ and $\sigma(R_a, bv_0)$, respectively. Under the above conditions, the purpose of this study is to determine the spectrum of Rhaly operator R_a as an operator on the Banach space bv_0 .

2. Matrix operators on bv_0

Now, it will be shown that $R_a \in B(bv_0)$ under the above conditions.

THEOREM 2.1. If $\{(n+1)a_n\}$ monotone and $\lim_n (n+1)a_n = L < \infty$, $R_a \in B(bv_0)$.

PROOF. From [5, Formula 9], $R_a \in B(bv_0)$ if and only if $\lim_n a_{nk} = 0$ for all k, and

$$\|R_a\|_{bv_0} := \sup_i R_i < \infty$$

where $\sum_{n} |\sum_{k=0}^{i} (a_{nk} - a_{n-1,k})| < \infty$. So we have

$$\begin{split} R_i &:= \sum_{n=0}^{\infty} \big| \sum_{k=0}^{i} (a_{nk} - a_{n-1,k}) \big| \\ &= \sum_{n=0}^{i} \big| \sum_{k=0}^{n} (a_{nk} - a_{n-1,k}) \big| + \sum_{n=i+1}^{\infty} \big| \sum_{k=0}^{i} (a_{nk} - a_{n-1,k}) \big| \\ &= a_0 + \sum_{n=1}^{i} \big| \left(\sum_{k=0}^{n} (a_{nk} - a_{n-1,k}) \right) + a_n \big| + \sum_{n=i+1}^{\infty} \big| \sum_{k=0}^{i} (a_n - a_{n-1}) \big| \\ &= a_0 + \sum_{n=1}^{i} \big| \left[(n+1)a_n - na_{n-1} \right] + \sum_{n=i+1}^{\infty} (i+1)(a_{n-1} - a_n) \big| \\ &= a_0 + \sum_{n=1}^{i} \big| (n+1)a_n - na_{n-1} \big| + (i+1)a_i - (i+1) \lim_{m \to \infty} a_m \\ &= a_0 + \sum_{n=1}^{i} \big| (n+1)a_n - na_{n-1} \big| + (i+1)a_i. \end{split}$$

i) If $\{(n+1)a_n\}$ is monotone increasing, then we have

$$sup_i R_i = 2a_0 = || R_a ||$$
.

ii) If $\{(n+1)a_n\}$ is monotone decreasing, then we obtain

$$sup_i R_i = \lim_{i \to \infty} 2(i+1)a_i = 2L = \parallel R_a \parallel.$$

For example, if $a_n = \frac{n+2}{(n+1)^2}$, then $(n+1)a_n < na_{n-1}$ and if $a_n = \sin \frac{1}{(n+1)}$ then $(n+1)a_n > na_{n-1}$.

THEOREM 2.2. If $\{(n+1)a_n\}$ monotone and $\lim_n (n+1)a_n = L < \infty$, then

$$(2.1) S \cap (2L, \infty) \subseteq \pi_0(R_a, bv_0).$$

PROOF. Since $bv_0 \subseteq c_0$, the proof is trivial.

LEMMA 2.3. Let $\{(n+1)a_n\}$ monotone and $\lim_n (n+1)a_n = L < \infty$. Then R_a^* which is the adjoint operator of R_a is transpose of the matrix R_a on bv_0 and $R_a^* \in B(bv_0^* \cong bs)$.

ispat. bv_0 is an AK-space and $bv_0^* \cong bs$ [6, p.110]. Hence from [6, p.266] we have

$$(2.2) R_a^* = R_a^t = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & \dots \\ 0 & a_1 & a_2 & a_3 & \dots \\ 0 & 0 & a_2 & a_3 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Since bv_0 is a Banach space, $||R_a||_{bv_0} = ||R_a^*||_{bv_0^*} = ||R_a^t||_{bs}$. Thus, from Theorem 2.1, $R_a^t \in B(bv_0^*)$.

LEMMA 2.4. Let $0 < L = \lim_{n} (n+1)a_n < \infty$ and

$$Z_n := \prod_{\vartheta=0}^n \left(1 - \frac{a_{\vartheta}}{\lambda}\right), \ \lambda \neq 0, \ \lambda \in C.$$

Then the partial sums of $\sum_{\vartheta=1}^{\infty} Z_n$ are bounded if and only if $LRe^{\frac{1}{\lambda}} \geq 1, \lambda \neq L$.

PROOF. We show the proof of the Lemma as proved in [2, Lemma 1.6]. The series $\frac{1}{1-u} = \sum_{n=0}^{\infty} u^n$ is uniformly convergent in every subinterval of |u| < 1. Hence $\ln(1-u) = -u + O(u^2)$, uniformly in |u| < 1/2,

 $u \in C$. Since $a_{\vartheta} \to 0$, for a given $\lambda \neq 0$ there exist ϑ_0 such that $\frac{a_{\vartheta}}{\lambda} \leq \frac{1}{2}$ for $\vartheta > \vartheta_0$,

$$\ln Z_n = \ln \prod_{\vartheta=0}^n (1 - \frac{a_{\vartheta}}{\lambda}) = \sum_{\vartheta=0}^n \ln(1 - \frac{a_{\vartheta}}{\lambda})$$

$$= C + \sum_{\vartheta=\vartheta_0}^n \ln(1 - \frac{a_{\vartheta}}{\lambda})$$

$$= C + \sum_{\vartheta=\vartheta_0}^n (-\frac{a_{\vartheta}}{\lambda} + O\left(\frac{a_{\vartheta}^2}{|\lambda|^2}\right))$$

$$= C - \frac{L}{\lambda} \sum_{\vartheta=\vartheta_0}^n \frac{1}{\vartheta+1} + \frac{L^2}{|\lambda|^2} \sum_{\vartheta=\vartheta_0}^n O\left(a_{\vartheta}^2\right),$$

where $t_{\vartheta} = O(\frac{1}{\vartheta^2})$. Now since $t_{\vartheta} = O(\frac{1}{\vartheta^2})$,

$$\sum_{\vartheta=\vartheta_0}^n t_\vartheta = \sum_{\vartheta=\vartheta_0}^\infty t_\vartheta - \sum_{\vartheta=n+1}^\infty t_\vartheta = C + O(\frac{1}{n}).$$

Since if $C_n = \sum_{\vartheta=0}^n \frac{1}{\vartheta+1} - \log n$, then

$$C_{n+1} - C_n = \frac{1}{2+n} - \log \frac{n+1}{n} = \frac{1}{2+n} - \log(1+\frac{1}{n})$$
$$= \frac{1}{2+n} - \frac{1}{n} + O(\frac{1}{n^2})$$

we have

$$\sum_{\vartheta=\vartheta_0}^n \frac{1}{\vartheta+1} = C + \log n + O(\frac{1}{n}).$$

So

$$C_{n+1} = C_0 + \sum_{\vartheta=0}^{n} (C_{\vartheta+1} - C_{\vartheta})$$

$$= C_0 + \sum_{\vartheta=0}^{\infty} (C_{\vartheta+1} - C_{\vartheta}) \sum_{\vartheta=n+1}^{\infty} (C_{\vartheta+1} - C_{\vartheta})$$

$$= C + O(\frac{1}{n}).$$

Hence as $n \to \infty$,

$$\log Z_n = C - \frac{L}{n} \log n + O(\frac{1}{n}),$$

that is

$$Z_n = exp(C - \frac{L}{n}\log n + O(\frac{1}{n}))$$
$$= exp(C)n^{-\frac{L}{\lambda}}(1 + O(\frac{1}{n}))$$
$$= An^{\frac{L}{\lambda}}O(n^{-LRe^{\frac{1}{\lambda}}-1}).$$

If $L\lambda \neq 1$, $LRe(\frac{1}{\lambda}) \geq 1$, then $s_n = \sum_{k=1}^n k^{-\frac{L}{\lambda}}$ are bounded and $\sum_{n=1}^{\infty} n^{-LRe(\frac{1}{\lambda})} < \infty$. So that the partial sums of $\sum_n Z_n$ are bounded. If $0 < LRe(\frac{1}{\lambda}) < 1$ or $L\lambda = 1$, then the partial sums of $\sum_{n=1}^{\infty} n^{-LRe(\frac{1}{\lambda})}$ are unbounded, but still we have $\sum_{n=1}^{\infty} n^{-LRe(\frac{1}{\lambda})} < \infty$. If $0 < LRe(\frac{1}{\lambda}) \leq 0$ then

(2.3)
$$\sum_{n=1}^{N} n^{-\frac{L}{\lambda}} \approx \frac{N^{1-\frac{L}{\lambda}}}{1-\frac{L}{\lambda}}$$

where $a_n \approx b_n$ means that there exist $m, M \in \mathbb{R}^+$ such that $mb_n < a_n < Mb_n$.

Using (2.3), we see that the partial sums of $\sum_{n=1}^{\infty} n^{-\frac{L}{\lambda}}$ are unbounded although $\sum_{n=1}^{\infty} n^{-LRe^{\frac{1}{\lambda}-1}} < \infty$ and hence we obtain that the partial sums of $\sum_{n} Z_{n}$ are bounded if and only if $LRe^{\frac{1}{\lambda}} \geq 1$.

THEOREM 2.5. If $\{(n+1)a_n\}$ monotone and $0 < L = \lim_n (n+1)a_n < \infty$, then $S \cup (\{\lambda : |\lambda - \frac{L}{2}| \le \frac{L}{2}\} - \{0\}) \subset \pi_0(R_a^*, bv_0^* \cong bs)$.

PROOF. If $R_a^* x = \lambda x$, then

(2.4)
$$\lambda a_n^{-1} x_{n+1} = (\lambda a_n^{-1} - 1) x_n.$$

Hence $0 \in \pi_0(R_a^*, bs)$ (because if $\lambda = 0$, then $x = \theta$). From (4), we have

$$(2.5) x_{n+1} = (1 - \frac{a_n}{\lambda})x_n.$$

If $\lambda = a_m$, $\lambda \in \pi_0(R_a^*, bs)$ (because for $n \ge m+1$, $x_n = 0$). From (2.5), we have

(2.6)
$$x_n = \prod_{j=0}^{n-1} (1 - \frac{a_j}{\lambda}) x_0.$$

From Lemma 2.4 the other λ 's have the properties $\alpha L \geq 1$. Hence we obtain

$$S \cup \left(\left\{ \lambda : \mid \lambda - \frac{L}{2} \mid \leq \frac{L}{2} \right\} - \left\{ 0 \right\} \right) \subset \pi_0(R_a^*, bv_0^* \cong bs).$$

LEMMA 2.6. Let $T_{\lambda} = \lambda I - R_a$. Then T_{λ}^{-1} is given by

(2.7)
$$T_{\lambda}^{-1} = (b_{nk}) = \begin{cases} \frac{1}{\lambda - a_n}, & k = n \\ \frac{a_n}{\lambda^2 \prod_{j=k}^n \left(1 - \frac{a_j}{\lambda}\right)}, & k < n \\ 0, & \text{otherwise.} \end{cases}$$

PROOF. If $T_{\lambda}x = y$, then we have

$$x_{0} = \frac{1}{\lambda - a_{0}} y_{0}$$

$$x_{1} = \frac{1}{\lambda - a_{1}} y_{1} + \frac{a_{1}}{(\lambda - a_{1})(\lambda - a_{0})} y_{0}$$

$$x_{2} = \frac{1}{\lambda - a_{2}} y_{2} + \frac{a_{1}}{(\lambda - a_{2})(\lambda - a_{1})} y_{1} + \frac{a_{2}\lambda}{(\lambda - a_{2})(\lambda - a_{1})(\lambda - a_{0})} y_{1}$$

$$\vdots \vdots \qquad \vdots$$

$$x_{n} = \frac{1}{\lambda - a_{n}} y_{n} + \frac{a_{n}}{(\lambda - a_{n})(\lambda - a_{n-1})} y_{n-1}$$

$$+ \frac{a_{n}\lambda}{(\lambda - a_{n})(\lambda - a_{n-1})(\lambda - a_{n-2})} y_{n-2} + \cdots$$

$$+ \frac{a_{n}\lambda^{n-2}}{\prod_{k=1}^{n}} (1 - \frac{a_{k}}{\lambda}) y_{1} + \frac{a_{n}\lambda^{n-1}}{\prod_{k=0}^{n}} (1 - \frac{a_{k}}{\lambda}) y_{0}$$

Therefore $T_{\lambda}^{-1} = (b_{nk})$ is given by (2.7).

LEMMA 2.7. If $Re^{\frac{1}{\lambda}} = \alpha$, then

::::

(2.8)
$$\prod_{k=0}^{N-1} |1 - \frac{a_k}{\lambda}| \simeq \frac{1}{N^{\alpha L}}$$

as $N \longrightarrow \infty$. We use the notation $a_n \simeq b_n$ in the sense that $\left(\frac{a_n}{b_n}\right)$, $\left(\frac{b_n}{a_n}\right)$ are both bounded.

THEOREM 2.8. If $\{(n+1)a_n\}$ monotone and $0 < L = \lim_n (n+1)a_n < \infty$, then

$$\sigma(R_a, bv_0) = \left\{ \lambda : |\lambda - \frac{L}{2}| \le \frac{L}{2} \right\} \cup S.$$

PROOF. By Theorem 2.5, and Lemma 2.7, we have

$$\left\{ \begin{array}{l} \lambda : |\lambda - \frac{L}{2}| < \frac{L}{2} \right\} \cup S \\ \subseteq \pi_0(R_a^*, bv_0 \cong bs) \subseteq \sigma(R_a^*, bv_0^*) = \sigma(R_a, bv_0). \end{array} \right.$$

Hence

$$\left\{ \begin{array}{l} \lambda \ : \mid \lambda - \frac{L}{2} \mid \ \leq \ \, \frac{L}{2} \end{array} \right\} \ \cup \ \, S \ \subseteq \sigma(R_a, bv_0).$$

To complete the proof let us show that,

$$\sigma(R_a,bv_0) \subseteq \left\{ \lambda : |\lambda - \frac{L}{2}| \leq \frac{L}{2} \right\} \cup S.$$

Now, let $|\lambda - \frac{L}{2}| > \frac{L}{2}$, (which means $\alpha L < 1$) and $\lambda \neq a_m$ ($m = 0, 1, 2, \ldots$). We prove that the matrix $T^{-1} = (b_{nk})$ given by Lemma 2.6 satisfies the properties in equations (1.1) and (1.2).

Since $\alpha L < 1 \Leftrightarrow |\lambda - \frac{L}{2}| > \frac{L}{2}$ and $\alpha L < 1$ and $\lambda \neq a_m$ (m = 0, 1, 2, ...), then

$$\lim_{n \to \infty} b_{nk} = \lim_{n \to \infty} \frac{a_n |\lambda|^2 \prod_{j=k}^n |1 - \frac{a_j}{\lambda}|}{=} \lim_{n \to \infty} \frac{(n+1)^{\alpha L} a_n n^{\alpha L - 1}}{(k-1)^{\alpha L}} = 0.$$

for every k. Hence (1.1) is satisfied.

Now lets show that the equation (1.2) is satisfied. Let

$$\sum_{n=0}^{\infty} \left| \sum_{m=0}^{N} (b_{nm} - b_{n-1,m}) \right| = \sum_{1} + \sum_{2} + \sum_{3}$$

where

$$\sum_{1} = \sum_{n=0}^{N} \left| \sum_{m=0}^{n} b_{nm} - \sum_{m=0}^{n-1} b_{n-1,m} \right|, \ 0 \le n \le N$$

$$\sum_{2} = \left| \sum_{m=0}^{N+1} b_{N+1,m} - b_{N+1,N+1} + \sum_{m=0}^{N+1} b_{N,m} \right|, \ n = N+1$$

$$\sum_{3} = \sum_{n=N+2}^{\infty} \left| \sum_{m=0}^{N} (b_{nm} - b_{n-1,m}) \right|, \ N+2 \le n \le \infty.$$

Using the Lemma 2.7, it can be shown that $\sum_i = O(1)$ for i = 1, 2, 3.

This agrees, with the result obtained by Okutoyi [2], for the special case $R_a = C_1$.

For the other special cases of spectrums of Rhaly matrices R_a we give the following examples.

Example 1. If
$$a = (\frac{n+3}{n^2+1})$$
 then

$$\pi_0(R_a^*, bs) = \{ \lambda : |\lambda - \frac{1}{2}| < \frac{1}{2} \} \cup \{ 1, 2, 3 \},$$

$$\pi_0(R_a, bv_0) = \emptyset$$

and

$$\sigma(R_a, bv_0) = \{ \lambda : |\lambda - \frac{1}{2}| \leq \frac{1}{2} \} \cup \{ 2, 3 \}.$$

Example 2. If $a = (\sin \frac{1}{n+1})$ then

$$\pi_0(R_a^*, bs) = \{ \lambda : |\lambda - \frac{1}{2}| < \frac{1}{2} \} \cup \{ 1 \},$$

and

$$\sigma(R_a, bv_0) = \{ \lambda : |\lambda - \frac{1}{2}| \leq \frac{1}{2} \}.$$

References

- G. Leibowitz, Rhaly Matrices, J. Math. Analysis and Aplications 128 (1987), 272–286.
- [2] J. I. Okutoyi, On the spectrum of C₁ as an Operator on bv₀, J. Austral. Math. Soc. (Series A) 48 (1990), 79-86.
- [3] J. B. Reade, On the spectrum of the Cesàro Operator, Bull. London Math. Soc. 17 (1985), 263-267.
- [4] JR. H. C. Rhaly, Terrace Matrices, Bull. London Math. Soc. 21 (1989), 399-406.
- [5] M. Stieglitz and H. Tietz, Matrix Transformationen von Folgenraumen Eine Ergebnisubersicht, Math. Z. 154 (1977), 1-16.
- [6] A. Wilansky, Summability Through Functional Analysis, North Holland, 1984.
- [7] M. Yildirim, On the Spectrum and Fine Spectrum Compact Rhaly Operators, Indian J. pure. appl. Math. 27 (1996), no. 8, 779-784.

Department of Mathematics Faculty of Science, Cumhuriyet University 58140 Sivas, Turkey