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ON A CASE OF ALL PAIRS
OF POLYNOMIAL ZEROS BAD

SeoN-HonGg KM

ABSTRACT. In this paper, we show, for a positive integer m and a
large odd integer n, the polynomial equation

n 1 2n+1 1
[[@-#*m)+ [ @-,Fm)=0
k=0 k=n+1

has a real zero on

1
((n FDME, (n+ D) 5)

1
((n+1)1+7,%1" + E’ (TL+2)1+#> y

respectively.

1. Introduction

Given some (or all) information about the individual two polynomials,
in particular about their factorizations, what can be said about the
factorization of their sum? For various results and examples about this,
see [3].

Let P4(z) and Pg(z) be monic real polynomials with degree n having
all zeros distinct and real. Then it is natural for us to be interested in
the number of real zeros of P4(z) + Pg(x). It is an easy consequence
of Fell [1] that, if the all zeros of P4(z) and Pg(z) form good pairs
(for definitions of good pairs and bad pairs, see Definition 1.1 of [2]),
P4(z) + Pg(z) has all its zeros real. But there has been no neat result
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for the case having bad pairs so far. In this paper, we consider a case of
all pairs of polynomial zeros bad.

One can check, by computational search, an arithmetic progression
F={1,2,---,2n} of length < 10 satisfies the following condition.

ConbpITION 1. Whenever FF = AUB, ANB =10, |A| =|B|=n, the
number of bad pairs of F' is equal to the number of nonreal zeros of

I @-a)+ ] @—1by.
a:€A b;€B
But an arithmetic progression F' does not satisfy Condition 1. For
example, there are (only) ten polynomials for the arithmetic progression
of length 12 that do not satisfy Condition 1. However, for an odd integer
n > 3, taking
A={0,1,2,---,n} and B={n+1,n+2,---,2n+1}

in Condition 1 leads the conclusion of Condition 1, i.e., the polynomial
equation

n 2n+1
[[c-k+ J] -k =0
k=0 k=n+1

has all pairs bad and all its zeros nonreal on Rz = n + 1/2. Hence we
might conjecture that, for an odd integer n and large positive integer m,
all zeros of

n 2n+1
(1) [[@-k =)+ J] @—k"=)=0.
k=0 k=n+1

lie very near on Rz = n + 1/2 and all nonreal. Here we observe that
all pairs of the zeros of each summand of (1) are still bad. However, in
this paper, we show that (1) has two real zeros near (n+1)*+Y/™+1/2.
More precisely,

THEOREM 2. Let n be a large odd integer. Then for a positive integer
m, the polynomial

n 2n+1
f(z) = H(w—kl+#)+ H (z — k')
k=0 k=n+1

has a real zero on intervals

1 1 1
((n + DM, (n+ DMtw + 5) and ((n F 1)

DN =

: (n+2)1+#),

respectively.
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2. Proof of the result

Main purpose of this section is to prove Theorem 2. For the proof of
Theorem 2, we need Euler-Maclaurin summation formula and an integral
inequality, Lemma 4 below.

THEOREM 3. (Euler-Maclaurin summation formula) Let f have
continuous function on [a, b) with a piecewise continuous derivative there.
Then

> so= [ eyt / b ((4-3) r@ae- (1 -3) ok,

a<n<b
where {t} =t — [t].

LEMMA 4. Let m be a fixed positive integer and p > 0. Then for a
positive integer n,

2n ”L—%‘
p p
/ loglt”i — n1+‘vlﬁ’ dt > / log‘nl'*?;‘ —tMtm | dt.
n+% 0

ProOOF. Let m a fixed positive integer and p > 0. Put a =1+ 1/m.
By appropriate change of variable

2n n
L =:/ log [t* — n[? dt=/ log|(n +u)® — n®? du,
nt3 7

and

n—3% n
B= [ logln® - di= [, 1ogln® = (n = )P du
0 1

2

Thus I; > I becomes

/ log
2

and it suffices to show that the integrand is positive, i.e. (n+u)*—n® >
n® — (n —u)®. Note that if @« > 1 and z > —1,z # 0, then

P

(ntu)? = s o,

n® — (n — u)®

-

(1+2)*>1+azx.
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So,for%ﬁugn,
(83 (a3
(1+3) +(1—3‘-) > 2,
n n

(n+u)*+ (n—uw)® > 2n°.

ie.,

This completes the proof. [

It follows from sign changes that the next lemma proves Theorem 2.

LEMMA 5. Let m be a fixed positive integer. Then for n large odd
integer and

1
z==+n+1)Hm,

2
we have
n 2n+1
[[e-k*=) <| I] @-K*+")].
k=0 k=n+1

PROOF. Let m be a fixed positive integer. It is enough to show that,
for n large even integer and

1
xr = E—FnL+#,
we have
n—1 2n—1 L
1
(2) D log(z — k') < Y log & — kM.
k=0 k=n :

For convenience, we define

1
g(t) =log |z — t'*= | =log 3 Fnlte — gt

Now, by Theorem 3, the left side of (2) equals

/On_% log (z — t'77) dt + /OW% <{t} - %) g'(t) dt

1

_ [({t} - %) log ( — t1+%)] Z_

1

1
"3 . "3 1 1
=/ log (z — t1+m)dt+/ ({t} - —) g'(t)dt — = log z,
0 0 2 2
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and the right side of (2) equals

]. 1 1+
log 5~ log ((2n - :v) Z log (k ~ )
k=n+1
2n

1 1
= log - —log ((277,) W — :v) +/ log (t'T7 — z)dt
2 n+%‘

2n
1
+ / ({t} — —) () dt+ log ((2n)!t = —2).
n+L 2 2
2
To show the inequality (2), we need an integral inequality:

n—% 2n
/ log (z — t'* =) dt < / log (17 — z) dt.
0 n+%

This can be easily verified from n large and Lemma 4. On the other

hand, the second integral of the above equality can be rewritten by
changing variable as following:

/:% <{t}——) (t)dt = /On_ ({t+ }——> n+t+ )dt

Hence it is enough to show that

1 1 1 1
—log ((2n)1+% - :17) + 2 log (2n)!T= — ) +1log = + 2 log x
3

2
n- 1 1 1
t4+ =} — — ! - ) dt
+/O <{+2 2)g(n-l—t+2)d

- /On—% ({t} - %) g (£)dt > 0.

Now we let

T(n) = /On_% ({t + %} - —é—) g'(n+t+%) dt—/on_% <{t} - %) g'(t)dt.

Then

1

T(n) = % /On_§ (g'(t) —gdn+t+ %)) dt

" /On—§{t F 3l ln it )~ (g () as

1
n—3

[g<t>—g<n+t+%>]0 + Nn),

1
2
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where N(n) = fon_% {t+3}g'(n+t+3)— {t}g'(t) dt. Now we estimate
N(n). For this, we set

A(n)={t€[0,n—%):0§{t}<%},
B(n)z{te[O,n—-%):%g{t}<1}.

Then it is obvious that

teab={0lh iho

And it follow from ¢'(t) <0, g'(n+t+ 1) > 0on [0,n — 1] that
1
N(n) = / () (g'(n+t+ ) —g'(t)> dt
A(N) 2
1
+ / {t} <g'(n+t+ =) —g’(t)) dt
B(N) 2
1 ) 1 ) 1
+ s g(n+t+—~)dt—/ g (n+t+2)dt
2 \Jawm) 2 B(n) 2
1 , 1 /
> = gln+t+5)—g(t)dt
2 B(n) 2
1 ) 1 ) 1
+ = g(n+t+=)dt— g(n+t+=)dt
2 \Jawm) 2 B(n) 2

_! / g’(n+t+1)dt—/ g'(t)dt
2 \Jam 2 B(n)

> 0.

Hence it remains to show that

1 e 11 1 11772
— . Sl = g(t) - - .
5 log ((Zn) :v)+log 2+2 og :I:+2 [g(t) gn+t+ 2)]0 >0

This is easy because the left side of the inequality equals

1,1 - Iya) Ly _
log2+2<log <a: (n 2) ) log ((n+2) z)),



On a case of all pairs of polynomial zeros bad 667

which is positive for sufficiently large even integer n. In all, the inequality
(2) is proved. O

From Theorem 2, we let

n 2n+1
A =T[@-k4%),  fa@)= J] @-k+).
k=0 k=n+1

From n odd and sign changes, both fi(z) and fa(x) are positive on the
interval

(n1+%, (n+ 1)1 ) U ((n+2)1+#, (n+3)1+#) .
But on the interval
((n+ D)%, (4 2)1+5),
we have fi(z) > 0 and fa(z) < 0. Now Lemma 5 asserts that f(z) =

fi(z) + f2(z) < O for

1
x=§+(n+1)1+%,

which completes the proof of Theorem 2.
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