NEGATIVE DIFFERENCE POSETS AND FUZZY IMPLICATION ALGEBRAS

YOUNG BAE JUN, HEE SIK KIM AND YOUNG SEOK KIM

ABSTRACT. The notion of negative difference on a poset is introduced, and the interrelations between FI-algebras and posets with negative difference are discussed.

1. Introduction

"Implication" is a basic logic connective in various logic systems. " $p \to q$ " means "if p then q" for two propositions p and q, where " \to " is called an implication operator. There are lots of papers concerning with this operator, especially on approximate reasoning, and most research is about semantic. In 1990, W. M. Wu [4] introduced the notion of fuzzy implication algebras, and investigated several properties. In [2], Z. W. Li and C. Y. Zheng introduced the notion of distributive (resp. regular, commutative) fuzzy implication algebra, and investigated the relations between such fuzzy implication algebras and MV-algebras. F. Kôpka and F. Chovanec [1] introduced the notion of difference on a poset. In this paper, we introduce the concept of negative difference on a poset, and investigate the interrelations between FI-algebras and posets with negative difference.

2. Preliminaries

A nonempty set X together with a binary operation \rightarrow and a zero element 0 is said to be a fuzzy implication algebra (FI-algebra, for short) if the following axioms are satisfied for all $x, y, z \in X$:

Received December 26, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 03G25, 03C05, 08A05.

Key words and phrases: FI-algebra, negative difference, ND-poset, terminal segment, directed upwards.

The first author was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

(I1)
$$x \to (y \to z) = y \to (x \to z)$$
,

$$(I2) (x \to y) \to ((y \to z) \to (x \to z)) = 1,$$

(I3)
$$x \rightarrow x = 1$$
,

(I4)
$$x \rightarrow y = y \rightarrow x = 1 \Rightarrow x = y$$
,

(I5)
$$0 \to x = 1$$
,

where $1=0\to 0$. We can define a partial ordering \leq on an FI-algebra X by $x\leq y$ if and only if $x\to y=1$. An FI-algebra X is said to be commutative if x+y=y+x for all $x,y\in X$, where $x+y:=(x\to y)\to y$. A subset S of an FI-algebra X is called a subalgebra of X if $x\to y\in S$ for all $x,y\in S$.

In an FI-algebra X, the following hold for all $x, y, z \in X$:

(p1)
$$x \to 1 = 1 \text{ and } 1 \to x = x$$
,

$$(p2) \ y \to z \preceq (x \to y) \to (x \to z),$$

(p3)
$$x \leq y \Rightarrow z \rightarrow x \leq z \rightarrow y, y \rightarrow z \leq x \rightarrow z,$$

$$(p4) \ x \leq y \to z \Rightarrow y \leq x \to z,$$

(p5)
$$x \leq y \rightarrow x$$
,

(p6)
$$x \leq (x \rightarrow y) \rightarrow y$$
,

$$(p7) \ x \leq y \Rightarrow y = (x \to y) \to y.$$

Example 2.1. (1) Let X = [0,1] and define a binary operation \rightarrow on X by

$$x \to y = \sup\{z \in X \mid \min\{x, z\} \le y\}, \forall x, y \in X.$$

Then $(X, \rightarrow, 0)$ is an FI-algebra (see [4]).

(2) Let $X = \{0, 1\}$ and define a binary operation \rightarrow on X by

$$x \to y = \max\{1 - x, y\}, \forall x, y \in X.$$

Then $(X, \rightarrow, 0)$ is an FI-algebra (see [4]).

(3) Let X = [0, 1] and define a binary operation \rightarrow on X by

$$x \to y = \min\{1, 1 - x + y\}, \, \forall x, y \in X.$$

Then $(X, \rightarrow, 0)$ is an FI-algebra (see [4]).

(4) Let $X = \{0, a, b, c, 1\}$ be a set with the following Cayley table and Hasse diagram:

\longrightarrow	0	a	b	c	1
$egin{array}{c} 0 \\ a \\ b \\ c \\ 1 \end{array}$	1	1	1	1	1
a	c	1	1	1	1
b	b	c	1	1	1
c	a	b	c	1	1
1	0	a	b	c	1

Then $(X, \rightarrow, 0)$ is an FI-algebra.

3. Negative differences

DEFINITION 3.1. Let $(P; \leq)$ be a nonempty partially ordered set (poset). A partial binary operation \ominus is called a *negative difference* on P if the element $a \ominus b$ is defined in P if and only if $a \leq b$, and the following axioms hold for all $a, b, c \in P$:

- (D1) $a \leq a \ominus b$.
- (D2) $a \ominus (a \ominus b) = b$.
- (D3) $a \le b \le c \Rightarrow a \ominus c \le a \ominus b$ and $(a \ominus c) \ominus (a \ominus b) = b \ominus c$.

EXAMPLE 3.2. Let \mathbb{R}^- be the set of all non-positive real numbers. The negative difference a-b of real numbers, $a,b\in\mathbb{R}^-$, $a\leq b$, satisfies the conditions (D1) – (D3).

PROPOSITION 3.3. Let (P, \leq) be a poset with a negative difference \ominus and let $a, b, c, d \in P$. Then the following assertions are true.

- (i) If $a \le b \le c$, then $a \ominus c \le b \ominus c$ and $(a \ominus c) \ominus (b \ominus c) = a \ominus b$.
- (ii) If $a \le b$ and $a \ominus b \le c$, then $a \ominus c \le b$ and $(a \ominus b) \ominus c = (a \ominus c) \ominus b$.
- (iii) If $a \le b \le c$, then $a \ominus (b \ominus c) \le c$ and $(a \ominus (b \ominus c)) \ominus c = a \ominus b$.
- (iv) If $a \le b$ and $a \le c$, then $a \ominus b = a \ominus c$ if and only if b = c.
- (v) If $a \le c \le d$ and $a \le b \le d$, then $a \ominus c = b \ominus d$ if and only if $a \ominus b = c \ominus d$.

PROOF. (i) Assume that $a \le b \le c$. Since $a \ominus c \le a \ominus b$ by (D3), it follows from (D1) – (D3) that $a \ominus c \le (a \ominus c) \ominus (a \ominus b) = b \ominus c$ and

$$(a\ominus c)\ominus (b\ominus c)=(a\ominus c)\ominus ((a\ominus c)\ominus (a\ominus b))=a\ominus b.$$

(ii) Suppose that $a \leq b$ and $a \ominus b \leq c$. Then $a \leq a \ominus b \leq c$, and so $a \ominus c \leq a \ominus (a \ominus b) = b$ by (D3) and (D2). Since $a \ominus c \leq (a \ominus b) \ominus c$ by (i), we have

$$(a\ominus c)\ominus((a\ominus b)\ominus c)=a\ominus(a\ominus b)=b,$$

which implies that

$$(a \ominus c) \ominus b = (a \ominus c) \ominus ((a \ominus c) \ominus ((a \ominus b) \ominus c)) = (a \ominus b) \ominus c.$$

(iii) Assume that $a \leq b \leq c$. According to (i) and (D1), we get $a \leq a \oplus c \leq b \oplus c$. It follows from (D3) and (D2) that $a \oplus (b \oplus c) \leq a \oplus (a \oplus c) = c$. Using (i) and (ii), we obtain

$$(a \ominus (b \ominus c)) \ominus c = (a \ominus c) \ominus (b \ominus c) = a \ominus b.$$

(iv) If $a \ominus b = a \ominus c$, then $c = a \ominus (a \ominus c) = a \ominus (a \ominus b) = b$. The converse assertion is obvious.

(v) Assume that $a \le c \le d$ and $a \le b \le d$. If $a \ominus c = b \ominus d$, then $a \ominus b = (a \ominus d) \ominus (b \ominus d) = (a \ominus d) \ominus (a \ominus c) = c \ominus d$

by (i) and (D3). Conversely, if $a \ominus b = c \ominus d$, then

$$a \ominus c = (a \ominus d) \ominus (c \ominus d) = (a \ominus d) \ominus (a \ominus b) = b \ominus d$$

by (i) and (D3). This completes the proof.

Let w be an element of a poset $(P; \leq)$. The set

$$T(w) := \{ a \in P \mid w \le a \}$$

is called a terminal segment of w. Obviously, $w \ominus w \in T(w)$ by (D1).

A poset $(P; \leq)$ is said to be *directed upwards* if for any $x, y \in P$, there is an element $z \in P$ such that $x \leq z$ and $y \leq z$.

PROPOSITION 3.4. Let $(P; \leq)$ be a poset with a negative difference \ominus and let $w \in P$. Then for any $a \in T(w)$, we have

- (i) $w \ominus a \in T(w)$.
- (ii) $w \ominus w$ is the greatest element in T(w).
- (iii) $a \ominus (w \ominus w) = a$.
- (iv) $a \ominus a = w \ominus w$.
- (v) $(P; \leq)$ has the greatest element if and only if $(P; \leq)$ is directed upwards.
- (vi) If $(P; \leq)$ is directed upwards, then $u \ominus u$ is the greatest element of P for any $u \in P$.

PROOF. Let $a \in T(w)$. According to (D1), we have $w \ominus a \in T(w)$, which proves (i). Since $w \leq w \leq w \ominus a$, it follows from (D2) and (D3) that $a = w \ominus (w \ominus a) \leq w \ominus w$. Hence $w \ominus w$ is the greatest element in T(w). Since $w \leq a \leq a \ominus a$, we conclude that $a \ominus a \leq w \ominus w$ because $w \ominus w$ is the greatest element in T(w). Using (D1) – (D3), we get $a \leq a \ominus (w \ominus w) \leq a \ominus (a \ominus a) = a$, which implies (iii). From (iii) and (D2), we obtain

$$a \ominus a = a \ominus (a \ominus (w \ominus w)) = w \ominus w.$$

Hence (iv) is valid. (v) is trivial. Assume that P is directed upwards. Denote $e_u := u \ominus u$ for every $u \in P$. We claim that $a \leq e_u$ for any $a \in P$. Since P is directed upwards, there is an element $z \in P$ such that $e_u \leq z$ and $e_a \leq z$. Since $z \in T(u) \cap T(a)$, it follows from (ii) that $z \leq u \ominus u = e_u \leq z$ and $z \leq a \ominus a = e_a \leq z$ so that $a \leq e_a = e_u$. This completes the proof.

DEFINITION 3.5. Let (P, \leq) be a poset with a negative difference \ominus . If there exists the least element, say e, in P, we say that P is a negative difference poset (briefly, ND-poset).

EXAMPLE 3.6. Let P = [-1,0]. For any two numbers $a, b \in P$ with $a \le b$, we define $a \ominus b = a - b$, where "-" is the usual subtraction. Then $(P; \le, \ominus)$ is an ND-poset with -1 as the least element.

PROPOSITION 3.7. Every ND-poset P contains the greatest element 1, and $1 = e \ominus e$.

PROOF. Let $a \in P$. Then $e \ominus a$ is defined in P because $e \leq a$, and $e \leq e \leq a \ominus a$ by (D1). It follows from (D2) and (D3) that $a = e \ominus (e \ominus a) \leq e \ominus e$, i.e., $e \ominus e$ is the greatest element in P, and we denote it by 1.

PROPOSITION 3.8. Let $(X, \to, 0)$ be an FI-algebra. We define a partial binary operation \ominus on X such that, for all $x, y \in X$, $x \ominus y$ is defined if and only if $x \preceq y$, and in this case

$$x \ominus y := y \rightarrow x$$
.

Then

- (i) $x \leq x \ominus y$ if $x \leq y$.
- (ii) $y \leq x \ominus (x \ominus y)$ if $x \leq y$.
- (iii) $x \ominus z \leq x \ominus y \text{ if } x \leq y \leq z.$
- (iv) $y \ominus z \preceq (x \ominus z) \ominus (x \ominus y)$ if $x \preceq y \preceq z$.

PROOF. (i) Using (I1), (I3) and (p1), we have that

$$x \to (y \to x) = y \to (x \to x) = y \to 1 = 1$$
, i.e., $x \preceq y \to x$.

Hence $x \leq x \ominus y$ if $x \leq y$.

(ii) According to (p6) and (i), we obtain

$$y \prec (y \rightarrow x) \rightarrow x = x \ominus (x \ominus y)$$
 if $x \prec y$.

- (iii) Assume that $x \leq y \leq z$. By (p3), $y \leq z$ implies $z \to x \leq y \to x$, and so $x \ominus z \leq x \ominus y$.
- (iv) If $x \leq y \leq z$, then (iii) and (I2) entail that $y \ominus z \leq (x \ominus z) \ominus (x \ominus y)$. This completes the proof.

THEOREM 3.9. If X is a commutative FI-algebra, then the partial binary operation \ominus on X described in Proposition 3.8 is a negative difference on $(X; \preceq)$.

PROOF. Assume that X is a commutative FI-algebra. Note that if $x \leq y \leq z$, then

$$1 = x \rightarrow y = ((x \rightarrow y) \rightarrow y) \rightarrow y$$

$$\leq (z \rightarrow ((x \rightarrow y) \rightarrow y)) \rightarrow (z \rightarrow y)$$

$$= (z \rightarrow (x + y)) \rightarrow (z \rightarrow y)$$

$$= (z \rightarrow (y + x)) \rightarrow (z \rightarrow y)$$

$$= (z \rightarrow ((y \rightarrow x) \rightarrow x)) \rightarrow (z \rightarrow y)$$

$$= ((y \rightarrow x) \rightarrow (z \rightarrow x)) \rightarrow (z \rightarrow y)$$

$$= ((x \ominus z) \ominus (x \ominus y)) \rightarrow (y \ominus z)$$

so that $((x\ominus z)\ominus (x\ominus y))\to (y\ominus z)=1$, i.e., $(x\ominus z)\ominus (x\ominus y)\preceq y\ominus z$. It follows from Proposition 3.8(iv) and (I4) that $(x\ominus z)\ominus (x\ominus y)=y\ominus z$. Now, since $y\preceq x\ominus (x\ominus y)$ if $x\preceq y$, it is sufficient to show that $x\ominus (x\ominus y)\preceq y$ whenever $x\preceq y$. Using (p1), (I3) and the commutativity, we have

$$\begin{array}{rcl} (x\ominus(x\ominus y))\rightarrow y &=& ((y\rightarrow x)\rightarrow x)\rightarrow y=(y+x)\rightarrow y\\ &=& (x+y)\rightarrow y=((x\rightarrow y)\rightarrow y)\rightarrow y\\ &=& (1\rightarrow y)\rightarrow y)=y\rightarrow y=1, \end{array}$$

which means $x \ominus (x \ominus y) \leq y$. Hence the partial binary operation \ominus on X is a negative difference on $(X; \leq)$.

Corollary 3.10. Every commutative FI-algebra is an ND-poset.

Proof. It is straightforward.

References

- [1] F. Kôpka and F. Chovanec, D-posets, Math. Slovaca 44 (1994), 21-34.
- [2] Z. W. Li and C. Y. Zheng, Relations between fuzzy implication algebra and MV-algebra, J. Fuzzy Math. 9 (2001), no. 1, 201–205.
- [3] D. Wu, Commutative fuzzy implication algebra, Fuzzy Systems and Mathematics 13(1) (1999), 27–30.
- [4] W. M. Wu, Fuzzy implication algebras, Fuzzy Systems and Mathematics 4 (1990), no. 1, 56–63.

Young Bae Jun
Department of Mathematics Education
Gyeongsang National University
Chinju (Jinju) 660-701, Korea
E-mail: ybjun@nongae.gsnu.ac.kr

Hee Sik Kim Department of Mathematics Hanyang University Seoul 133-791, Korea

 $E ext{-}mail: heekim@hanyang.ac.kr$

Young Seok Kim
Department of Mathematics Education
Gyeongsang National University
Chinju (Jinju) 660-701, Korea
E-mail: sira2002@hanmail.net