DOI QR코드

DOI QR Code

ON RINGS CONTAINING A P-INJECTIVE MAXIMAL LEFT IDEAL

  • Kim, Jin-Yong (Department of Mathematics and Institute of Natural Sciences Kyung Hee University) ;
  • Kim, Nam-Kyun (Division of General Education Hanbat National University)
  • Published : 2003.10.01

Abstract

We investigate in this paper rings containing a finitely generated p-injective maximal left ideal. We show that if R is a semiprime ring containing a finitely generated p-injective maximal left ideal, then R is a left p-injective ring. Using this result we are able to give a new characterization of von Neumann regular rings with nonzero socle.

Keywords

References

  1. Trans. Amer. Math. Soc. v.97 Direct products of modules S.U.Chase https://doi.org/10.2307/1993382
  2. Rings Theory : Nonsingular Rings and Modules K.R.Goodearl
  3. Pacific J. Math. v.14 Rings all of whose finitely generated modules are injective B.L.Osofsky https://doi.org/10.2140/pjm.1964.14.645
  4. Proc. Amer. Math. Soc. v.48 On the injectivity and flatness of certain cyclic modules V.S.Ramamurthi https://doi.org/10.2307/2040685
  5. Mh. Math. v.86 On von Neumann regular rings,Ⅲ R.Yuechiming https://doi.org/10.1007/BF01659723
  6. J. Algebra v.95 On V-rings and prime rings R.Yuechiming
  7. Comm. Algebra v.20 On biregularity and regularity R.Yuechiming https://doi.org/10.1080/00927879208824372
  8. Comm. Algebra v.21 Hereditary rings containing an injective maximal left ideal J.Zhang;X.Du https://doi.org/10.1080/00927879308824811

Cited by

  1. Left Rings vol.2011, 2011, https://doi.org/10.1155/2011/294301
  2. On Rings Containing a Non-essential nil-Injective Maximal Left Ideal vol.52, pp.2, 2012, https://doi.org/10.5666/KMJ.2012.52.2.179