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NONVANISHING OF A PLURIGENUS
OF A THREEFOLD OF GENERAL TYPE

DoNG-KWAN SHIN

ABSTRACT. When X is a threefold of general type, it is well known
h(X,0x(nKx)) > 1 for a sufficiently large n. When x(Ox) > 0,
it is not easy to obtain such an integer n. A. R. Fletcher showed that
R (X,0x(nKx)) > 1 for n = 12 when x(Ox) = 1. We introduce
a technique different from A. R. Fletcher’s. Using this technique,
we also prove the same result as he showed and have a new result.

Throughout this paper, we are working over the complex number field
C.

When X is a threefold of general type with a canonical divisor Ky,
it is well known that h°(X, Ox(nKx)) is not zero for a sufficiently large
n. When x(Ox) < 0, we have h%(X,0x(nKx)) # 0 for n > 2. But
when x(Ox) > 0, it is not easy to obtain such an integer n.

M. Reid and A. R. Fletcher gave the formula for x(Ox(nKx)) in
Reid [3] and Fletcher [1]:

_n(n—-1)2n-1)
x(Ox (nKx)) = 13

Ex®+ (1 - 2n)x(0x) + Y _UQ,n),
Q

where the summation is over a basket of singularities. In fact, singular-
ities in the basket are not necessarily the singularities which appear on
X. However, the singularities of X make the contribution as if they were
in the basket. For detailed explanations about a basket of singularities,
see Reid [3] or Kawamata [2]. The exact formula for I(Q,n) is given as
follows:

n—1 ¢ =T
UQ,n) = Z Ma

1
where @ is a singularity of type %(1, —1,b), (r,b) = 1 and b is the least
residue of ¢b modulo r. For detailed explanations about [(Q, n) and types
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of singularities, see Reid [3] or Fletcher [1]. For the sake of simplicity,
let’s denote 3, (@, n) by I(n) and 1(1,-1,b) by b/r, unless there is
some confusion. Let’s identify the type b/r with the number b/r in the
interval (0,1]. Then we can describe our situation for a computation of
l(n) very easily.

Combining above formula with the Kawamata-Viehweg Vanishing
Theorem, we have the following proposition. Since a plurigenus is a
birational invariant, we may assume that X is a canonical threefold
from now on.

PROPOSITION 1. For alln > 2,
_n(n—-1)2n-1)
N 12

A. R. Fletcher introduced an interesting method. Using his method,
he showed p12 > 1 when x(Ox) = 1 (see Fletcher [1]). We are going
to introduce a technique different from A. R. Fletcher’s. Using this
technique, we have also the same result as he showed and a new result.
See Theorem 1 and Theorem 2. To get these results, we are going to
find necessary conditions to be pi12 = 0 which are different from A. R.
Fletcher’s. Our necessary conditions are mutually disjoint tables T3, 15
and T3 which are given in the end of this paper. Tables T1, T2 and T3
help us to find the combinatorial ideas and the directions for the proofs.

def

pn = BY(X,0x(nKx)) Kx3+(1-2n)x(Ox)+l(n).

Let’s state our preliminary lemmas.

LEMMA 1. Let Q be a point of type b/r. Let k = min{b,r —b}. Then
we have nb(r — nb) = nk(r — nk) for a positive integer n.

PrRoOOF. If k = r — b, then we have
nk=nr —nb=-nb mod r.
From the graph of z(r — z), we have
nb(r — nb) = nk(r — nk).
O

Note that k < 5. By Lemma 1, we may assume that the basket con-
tains only types of the form k/r because b/r and k/r produce the same
1(@,n). In our sense, a singularity of type k/r stands for a singularity of
type k/r or (r —k)/r. In either case, we have the same value for I(Q,n).
Thus, it is enough to consider a point of type k/r for a computation of

{Q,n).
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LEMMA 2. If the basket contains a singularity of type k/r such that

5 (12x(0x) - 1)(24x(Ox) — 1)
- 2(6x(0x) — 1) ’

then p12x(ox) > 1.

For a proof of Lemma 2, see Fletcher [2, 4.9].

When x(Ox) = 1, Lemma 2 implies p12 # 0 if a basket contains
a point of type r > 26. Thus, it is enough to consider finite cases
k/r, (r < 26) to find possible candidates for the basket to be p1o = 0
when x(Ox) = 1.

LEMMA 3. (1) If po = p3 = 0, then x(Ox) = 1_102]6'

1 . 11kr — 9k — 3k(r — 3k
(2) If pp = ps = 0, then x(Ox) = 35 o ( )-

ProoF. Eliminate Kx? from the system of equations ps = p3 = 0.

Express x(Ox) in other terms. Then we have x(Ox) = 10 > k. We can
get also the other case by the same process from the system of equations
p2=ps =0. O

11kr — 9k2 — 3k(r — 3k)
2r

The term
pressed as follows:

in (2) of Lemma 3 can be ex-

11kr — 9k% — 3k(r — 3k) |4k if k/r <1/3
2r r+k if1/3<k/r<1/2

Note that r + k has the smallest value 3 which comes from one point of
type 1/2. The next one is 6 which comes from two points of type 1/2.

Let X be a canonical threefold with x(Ox) = 1.

Suppose that pi2 = 0. Then we have py = p3 = pg = pg = 0.

Now, we are going to consider the following equations which are linear
combinations of several p, = 0. The reason for these equations is to get
equations of Kx2 and I(n) only:

0 =1p12 —pa— 2p3 — 2p2
0 = p12 — p3 — 6p2
0 =ps — p3s — 2pa.
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Then from Proposition 1, we have
0 = 240K x> +1(12) — I(4) — 21(3) — 21(2)
0= %KX:* +1(12) — 1(3) — 61(2)
0 = 24Kx3 +1(6) — I(3) — 21(2).

Each of [(12) —1(4)—2l(3)—21(2), 1(12)—1(3)—6l(2) and I(6)—1(3)—2[(2)
must be negative, since K x° is positive. It means that the basket must
contain points @1, Q2 and Q3 each of which contributes a negative value
to the corresponding equation, i.e., @1, @2 and @3 such that

91(Q1) :==1(Q1,12) — 1(Q1,4) — 21(Q1,3) — 21(Q1,2) <0
92(Q2) :=1(Q2,12) — 1(Q2,3) — 6/(Q2,2) <0
93(Qs3) :==1(Q3,6) — 1(Q3,3) — 21(Q3,2) < 0.

For the sake of simplicity, let’s denote each of above equations by g;
respectively.

Now, we are going to search points Q); of type k/r such that g;(Q;) <
0. By Lemma 2 and Lemma 3, it is enough to test the type k/r such
that 2 <r <25and 1<k <10.

Finally, we obtained tables T; from each of g; < 0(1 <4 < 3) using
the computer program. Note that Ty, T, and T3 are mutually disjoint.
Thus, the basket must contain the point @; from each of the tables. We
attach tables T}, T5 and T3 at the end. We also attach some explanation
about the tables.

Now, we are ready to describe the possible basket to be pio = 0.

(1) The basket must contain at least one point from each table of
T1, T, and T3, since the tables are disjoint.
(2) By Lemma 3, the points in the basket must satisfy the following :

10x(0x) = k

35x(0Ox) =4t + s,
where 4t is the nonnegative term due to the points of type< 1/3,
and s is the term due to the points of type> 1/3.

Note that the point of the same type can appear several times in the
basket. Note that the several points in the same table can appear in the
basket.

The following result is already known in Fletcher [1]. We are going
to prove again using the technique different from he used.
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THEOREM 1. For a smooth threefold X of general type with x(Ox) =
1, then we have p12 > 1.

PROOF. We may assume that X is a canonical model.

Assume that p1o = 0. As we explained above, the basket must contain
at least one point from each of tables 71, T, and T3 which are mutually
disjoint.

Comparing the first and the third columns of two tables Tj and T3,
we can notice that the positive value is bigger or equal to the negative
value except the type 2/5. Thus, consider the add-up of the following
two equations:

P12 — P4 — 2p3 — 2p2 = 0 and pg — p3 — 2p2 = 0.
Then we have
0= 264Kx> + (1(12) — 1(4) — 21(3) — 21(2)) + (I(6) — I(3) — 2(2)).

Since Kx2 > 0, the basket must contain a point which contributes a
negative value to

(1(12) — 1(4) — 21(3) — 21(2)) + (1(6) — I(3) — 21(2)),

i.e., a point @ such that ¢1(Q) + g3(@) < 0. Clearly, such a point must
come from table T7 or T3. As we mentioned above, the point of type
2/5 is the only point such that g1(Q) + ¢g3(®@) < 0. Hence the basket of
singularities should be of the following form:

{ some point from the table Ty, 1/2, 2/5, ---}.

Comparing the first and the second columns of two tables 77 and T5,
we can notice that the positive value is bigger or equal to the negative
value except the type 1/2 and 4/11. Since the type 1/2 must appear in
the basket, we are going to divide into the following two cases:

Case (1) the basket does not contain a point of type 4/11 in T1,
Case (2) the basket contains a point of type 4/11 in T3.

Case (1). The basket does not contain a point of type 4/11 in Tj.

One single point of type 1/2 in table Ty contributes only —0.25 to
1(12) — I(3) — 61(2). One single point in table T} contributes to [(12) —
[(3) — 61(2) at least 0.57-- - since the type 4/11 is not in the basket by
our assumption. Since the basket must contain a point from table 77,
the basket must contain at least 3 points of type 1/2 to get a negative
value of 1(12) — I(3) — 61(2).

One single point of type 2/5 in table T3 contributes —0.2 to I(6) —
1(3)—21(2). One single point in table T} contributes to I(6)—[(3)—2{(2) at



608 Dong-Kwan Shin

least 0.28 - - - since the type 4/11 is not in the basket by our assumption.
To get a negative value of {(6) — I(3) — 2{(2), the basket must contain
an additional point from table 75. We already have 3 points of type
1/2, a point from 77 and a point of type 2/5 which must appear in the
basket. Thus, the basket can contain no other additional point from 73
than a point of type 2/5, since >, k; = 10 by (1) of Lemma 3. Hence
the basket of singularities should be of the following form:

{some point from the table Ty, 3 x 1/2, 2x2/5, ---}.

Moreover, by (1) of Lemma 3 again, a point of type 2/7 or 3/11 is only a
candidate for a point from 7} which must appear in the basket. A single
point of type 3/11 contributes at least 1.0 to [(12) — I(3) — 6I(2). If a
point of type 3/11 is contained in the basket, the basket must have at
least 5 points of type 1/2 to get a negative value of 1(12) — I(3) — 61(2).
It contradicts (1) of Lemma 3. Hence, by (1) of Lemma 3, the basket
for case (1) should be of the following form:

1
{2/7, 3x1/2, 2x2/5, _}.
By (2) of Lemma 3, we have the following equations:

4-24+3(1+2)+2(2+5)+ 8 =35,

where 3 are the term due to the last point of type 1/r in the basket.
We have 8 = 4.
Let’s determine r. From ps = 0, we have

1
0=pp = 5Kx3 —3x(0x) +1(2)

1 5 3 6 r-—1
=-Kx®-34+=-4+4= .
pi X Tt TR Ty

Since Kx? is positive, 0 < %KX?’ = %—%. The integer > 2 which

satisfies above inequality are 2 or 3. When 7 = 2, we have 3 = 3 by the
explanation just below Lemma 3. Hence we have a following possible
candidate for a basket to be p12 = 0:

{2/7, 3x1/2, 2x2/5, 1/3}.
Case (2). The basket contains a point of type 4/11 in table T7.

In this case, the possible candidate is the following:

{4/11, 1/2, 2/5, --- }.
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By Lemma 3, we have the following;:
4+1+24+a=10
1543+ 74+ 06=35

where o, ( are the nonnegative terms due to the other points not listed
explicitly in the above basket. We have o = 3, 8 = 10. Since 3 is of the
form 4t + s (s = 0, or s > 3), by the explanation just below Lemma 3,
there are two possible combinations for 8 = 10:

t=0,s=100rt=1, s=6. --- (*)

The basket {4/11, 1/2, 2/5, -- -} must have more additional points but
contain at most one more additional point of type < 1/3 since 0 <t < 1.
The fact o = 3 implies that the basket can have at most three more
additional points since ), k; = 10. Hence let’s divide our case into the
three subcases depending on the number of the additional points we can
add to the basket.

Subcase 2-(1). The basket contains 3 more extra points k;/r;(1 <
i <3).

Then each k; must be 1 since a = 3. Moreover, § # 10 from three
points of type > 1/3 since each k; is 1. Thus, by (), the basket must
contain one additional point of type < 1/3 and two additional points of
type > 1/3. Hence, the additional points which are not listed explicitly
in the basket are two points of type 1/2 and one point of type 1/r (r > 3)
since all the k; are 1. Thus, we have the following basket:

{4/11, 3% 1/2, 2/5, 1/r(r > 3)}.

Now, let’s determine . From p; = 0, we have

1 14 3 3 r-—-1
=py==-Kx°— — 44 i
0=po 5 X 3+11+4+5+ o
Since Kx? is positive, we must have
1, 1 27

The integer which satisfies above inequality is 3 or 4. Hence we have the
following possible candidates for a basket to be p12 = 0:

{4/11, 3x 1/2, 2/5, 1/3} or {4/11, 3 x 1/2, 2/5, 1/4}.
Subcase 2-(2). The basket contains 2 more extra points k;/r; (i =

1, 2).
In this case, we may assume k3 = 1, ko = 2 since ), k; = 3.
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If 1/r1 < 1/3, then the type of the other point is greater than 1/3
because the basket can contain at most one additional point of type
< 1/3 more by (*). Since 3 = 10, we must have

10 =4+ (2+ry).

Hence ro = 4. It is impossible since ko is relatively prime to r5. Hence
1/r1 >1/3,1e,r1 =2,

If 2/ry < 1/3, then we must have § = 11 which contradicts. Thus
2/r3 > 1/3. The only possible integer for 72 is 5 by (*) since § = 10.
Hence we have a following possible candidate for a basket to be p;2 = O:

{4/11, 2x 1/2, 2 x 2/5}.

Subcase 2-(3). The basket contains only one more extra point k/7.

Then k = 3. If 3/r < 1/3, then 8 = 12 which contradicts. Thus
3/r > 1/3. Then r = 7 by (x). Hence we have a following possible
candidate for a basket to be p13 = 0:

{4/11, 1/2, 2/5, 3/7}.
Now, we have all possible baskets to be p;2 = O:
{2/7,3 x 1/2,2 x 2/5,1/3}, {4/11,3 x 1/2,2/5,1/3},

{4/11,3x1/2,2/5,1/4}, {4/11,2x1/2,2x 2/5}, {4/11,1/2, 2/5,3/7}.

The last step is as follows: for (n = 2,3,4,6,12),

(1) plugging in all these baskets into equations p, = 0,

(2) check and compare K x3 from each equation p, = 0 which must
be positive and equal to each other.

Using a computer program, we check all the baskets given above.
Then we have that Kx?3 from py = 0 is not equal to K %3 from p12 =0
in all the cases. For example, for the basket {2/7, 3x1/2, 2x2/5, 1/3}

Kx?3 from py = 0 is 0.0047 - - -, but K x?3 from p;2 = 0 is 0.000809 - - -.
Therefore, we have p12 # 0. O

Using this technique, we have the following results - Theorem 2 and
Corollary 1.

Let X be a canonical threefold. Suppose that pe4 = 0. Then we have
pn = 0 for n =2, 3, 4. Consider the following equation:

D24 — 2pg — 3p3 — 6p2 = 0.
We have

4275

——2—Kx3 4+ 1(24) — 20(4) — 31(3) — 61(2) = 0. -+ (%%)
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Since Kx? is positive, the basket must contain a point @ which con-
tributes a negative value to

1(24) — 2i(4) - 31(3) — 61(2),
i.e., a point @ such that

g1 1(Q,24) - 21(Q, 4) - 31(Q,3) — 61(Q,2) < 0

is negative. The list for such points Q is given in table Ty. By table Ty},
we have the following results.

THEOREM 2. Let X be a canonical threefold. If the basket of X does
not contain a point of type k/r such that r = 2 or r > 226, then we
have pgq # 0.

PROOF. It is clear by table T}. O

COROLLARY 1. Let X be a canonical threefold. Suppose that the
basket of X does not contain a point of type k/r with r > 226. If
pos = 0, then we have Kx3 < %X(OX).

PROOF. Since pys = 0, the basket must contain a point of type 1/2
from table T;. Let t be the number of points of type 1/2. Then from

(x%), we have

4275 1
Kyl -Zt<o.
9 X 4 <0
Note that if the basket consists only of points of type 1/2, then pa 3 0.

Thus 1 1 10
4275, 3 1, 1y, _ 10 _
Kx <4t<4;kZ - X(Ox)

Hence we have Kx® < g=x(Ox). O

REMARK 1. Here, we attach the tables which explained above The-
orem 1. Each table T; shows the list of points such that ¢;(Q) < 0.
Three tables have mutually disjoint lists of points. It implies that
the basket must contain at least one point from each list. Note that
r < 25 and k < 10.

Each table T; shows the negative values of g; and the values of other
functions g; at @ together. The numbers in the tables are not the
exact values but approximations. Approximation value is correct up
to 7 digit below a point. The last digit is determined by a round up.
Approximation value is enough because we are using the tables only to
compare the values.
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The different combinations of p, give the different tables. There are
many different combinations of p,. Maybe, we may expect a better
result from different tables from ours.

Ty:Table for g1(Q) <0

Type | 1(Q) 92(Q) 93(Q)
2/7 |-0.14285714 | 0.57142857 | 0.28571429
3/11 [-0.36363636 | 1.0 0.36363636
4/11 |-0.09090909 | 0 0.09090909
5/18 | -0.33333333 | 1.75 0.66666667
7/25 [-0.4 2.4 0.96
Ty: Table for go(Q) <0
Type | 1(Q) | 92(Q) | 93(Q)
1/2 [0 025 |0
T3:Table for g3(Q) <0
Type | 61(Q) 92(Q) 93(Q)
2/5 |0 0 0.2
5/13 | 0.46153846 | 0.53846154 | -0.15384615
7/17 | 1.23529412 | 1.11764706 | -0.17647059
7/18 | 0.66666667 | 0.75 ~0.33333333
8/21 | 0.57142857 | 0.71428571 | -0.14285714
9/22 [ 1.36363636 | 1.25 ~0.36363636
9/23 [ 0.78260870 | 0.86956522 | -0.52173913

REMARK 2. The table for g4(Q) < 0 is

point between 1/2 and 113/227.
Ty: Table for g4(Q) <0

very simple. There is no

Type

94(Q)

1/2

-0.25

113/ 227

-0.22907489
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