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FOCAL POINT IN THE C°-LORENTZIAN METRIC

JAEDONG CHOI

ABSTRACT. In this paper we address focal points and treat man-
ifolds (M, g) whose Lorentzian metric tensors g have a spacelike
CP-hypersurface ¥ [10]. We apply Jacobi fields for such manifolds,
and check the local length maximizing properties of C''-geodesics.
The condition of maximality of timelike curves(geodesics) passing
CP%-hypersurface is studied.

1. Introduction

The concept of a warped product manifold was introduced by Bishop
and O’Neill in ([1]), where it served to provide a class of complete Rie-
mannian manifolds with negative curvature. The connection with gen-
eral relativity was first made by Beem, Ehrich, and Powell ([2], [3])
who pointed out that several of the well-known exact solutions to Ein-
stein’s field equations are pseudo-Riemannian warped products. Beem
and Ehrich ([4], [5]) further explored the extent to which certain causal
and completeness properties of a space-time maybe determined by the
presence of a warped product structure.

Many authors ([6]-[11}) have dealt with Lorentzian manifolds with
non-smooth metric tensors from various view points. Of particular in-
terest are space-times which have a metric tensor which fails to be C!
across a hypersurface, and is C* off the hypersurface. A space-time
which, in an admissible coordinate system, the metric tensor is contin-
uous but has a jump in its first and second derivatives across a sub-
manifold will have a curvature tensor containing a Dirac delta function
([12]). The support of this distribution may be of three, two, or one
dimensional or may even consist of a single event. Lichnerowicz’s for-
malism ([13]) for dealing with such tensors is modified so as to obtain
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a formalism in which the Riemannian curvature tensor and Ricci cur-
vature tensor exist in the sense of distributions. Thus, warped product
spaces are extended to a richer class of spaces involving multiply prod-
ucts. Multiply warped products spaces were studied by Flores, J, L. and
M. Sanchez ([14]). The conditions of spacelike boundaries in the multi-
ply warped products spacetimes were studied by Steven G. Harris. The
Kasner metric ([15]) was studied as a cosmological model by Schiicking
and Heckmann(1958). J. Choi investigated the curvature of a multiply
warped product with C%-warping functions [16]. Very recently, we have
studied a multiply warped product manifold associated with the BTZ
(de Sitter) black holes to evaluate the Ricci curvature components in-
side (outside) the black hole horizons. We have also shown that all the
Ricci components and the Einstein scalar curvatures are identical both
in the exterior and interior of the event horizons without discontinuities
for both the BTZ and dS black holes [17].

In this work, we study focal points and treat manifolds (M, g) whose
C tensors g have a spacelike C%-hypersurface & ([9]). We apply Ja-
cobi fields for such manifolds, and check the local length maximizing
properties of C'-geodesics. The condition of maximality of timelike
curves(geodesics) is studied. Conjugate points and cut points play large
roles in Lorentzian geometry and general relativity ([10], [18]). The
existence of conjugate points along non-spacelike geodesics in a physi-
cally realistic space-time is an essential part of the proof ([19]) of the
Hawking-Penrose singularity theorems ([20]).

2. Focal point in the C%Lorentzian metric

The concept of a conjugate point along a geodesic can be generalized
to the notion of a focal point of the submanifold. Let H be a nondegen-
erate submanifold of the space-time (M, g). At a each point p € H the
tangent space T, H may be naturally identified with the vectors of T,M
which are tangent to H at p. The normal space Tle consists of all vec-
tors orthogonal to H at p. Since H is nondegenerate, TpLH NT,H = {0}
for all p € H. We denote the exponential map restricted to the nor-
mal bundle TPJ-H by exp'. Then the vector X € T;-H is said to be a
focal point of H if (expt), is singular at X. The corresponding point
expt(X) of M is said to be a focal point of H along the geodesic seg-
ment exp-. When H is a single point, then T;'H = Tp,M and a focal
point is just an ordinary conjugate point. Focal points may also defined
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using Jacobi fields and the second fundamental form. Jacobi fields are
used to measure the separation of nearby geodesics. If p is a focal point
along a geodesic ¢ which is orthogonal to the submanifold H, then some
geodesics close to ¢ and orthogonal to H tend to focus at p.

We recall the definition of a regularly embedded hypersurface. Let
M be a smooth manifold of dimension n. Then subset S of M is a
regularly embedded hypersurface of M if for all p € S, there exists a
coordinate neighborhood U(p) with coordinates (x1,...,z,). such that
SNU = {(z1,...,2n) € U | z, = p}. For convenience, we say that such
a neighborhood U is partitioned by S. We denote {z € U | z,, > p} and
{z €U |z, < p} by U} and U, , respectively. Now let M be a smooth
manifold with a regularly embedded hypersurface S. Let S¢ denote the
complement of S. We define the concept of a C?-Lorentzian metric on
M.

DEFINITION 2.1. [9] C%-Lorentzian metric on M is a nondegenerate
(0,2) tensor of Lorentzian signature such that:

(1)geC’on S,

(2) g€ C*® on M N S,

(3) For all p € S, and U(p) partitioned by S, g]Up+ and 9|U; have
smooth extensions to U. We call S a C%-singular hypersurface of (M, g).

Let M be a manifold with a spacelike CO-hypersurface S as above.
Also, let ¢ : [a,b] — M be a piecewise timelike geodesic for the partitions
a<0<bandc(0) €S. Let a: [a,b] X (—¢,€) — (M, g) be a piecewise
smooth variation of ¢ such that a = a(t, s) where T' = a*%, W = a*%
and satisfying

(1) a(t,0) = c(t) for t € [a,b],

(2) a(0,s) € S for all s € (—¢,¢).

The variation vector field W(t) = a*% of a variation « along ¢ may
have discontinuities in its derivative at ¢ = 0. If N is the normal com-
ponent of W along ¢ such that N = W + (W, ¢)¢/, N may also fail to
be smooth at t = 0. We derive the second variation formula for L”(0)
in terms of N and W.

PROPOSITION 2.2. Let ¢ : [a,b] — (M,g) be a unit speed timelike
geodesic segment and o : [a,b] X (—€,e) — (M, g) be a variation of ¢ for
the partitionto =a <t; =0<ty=b, T, W, N and L as above, then

L) = — (W, D),
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b 2
L'(0) = / (N + R(W, )¢/, N)ledt + > (N(t:), Oy, N)
a i=0

— (VwW, s+ [(Vw W, T))]
Proof. Recalling that

o

: 173
= [ cmmy @
271 . t;
= | s{c@mrre@mla,

differentiating the expression under the integral sign, and using the iden-
tity

VwT — VoW =[W,T] =0
we have

2~ 1)~ (92w, 1))
(VwN W, T) — (NoW,VwT)
(—(T,T))}/?
(VeW, T)(VeW, T)
(—<T’ T>)1/2<T’ T>
= —(Vw VW, T) = (VoW,VwT) — (VrW, T>2
for (¢,s) € (ti—1,ti) X (—¢€,€).
From W = N — (W, T)T we have
(VeW, Vo W)|0)

= (VIN,VrN) - 2(V2N, Ve (W, T)T))

+(Vr((W, T)T), Vo (W, T)T) )

d

= (VrN,VrN) — 2(35((W7 )0 (VTN, T>|(t,0))

+ (S (W, T)T + (W,T) Vs,

d

S(W,THT + (W, T)VrT oo
= (Yo, Vo N) + { S(w, )T T) )
= (V£ N, VoN) — (V2 W, T))?
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and obtain 9
I F o -1/20_
53 (T2 (~(Vrw, 7))}
= —(VwVrW,T) — (VrN,VyN)
this yields
t;
L!(0) = (=(Vw VW, T) — (VrN, VrN))dt.
ti_1
Also, using [W,T] =0 one obtains
R(T, W)W = VoV W — Vi VoW

and d
(VerVwW,T) = EZ<VWVV’ T)

therefore
t;

L}(0) = t (R(T, W)W, T) ~ (V7 N,V N))|0)dt
i—1
~(VwW, D).
From

d
—(VrN,VrN)|¢0) = — zl—t(N’ VN0

+ (N, VeV N0
and L = 32 | L;, one obtains

L"(0) = /(; b((R(T, W)W, T) + (N, N”))(t,o)dt
~2wm@—wwmewwm
i=1 ot
- / b<<R(W, )T, N — (W, T)T> + (N”,N))(t’o)dt
+ i(N» Ay Ny = (VwW, T)[b + [(VWW, T>]
i=0
using W = N — (W, T)T. Thus,

2
L'(0) = / "IN 4 R(W T)T, N)dt + 3 (N(t:), A, N)
a 1=0

= (VW Tle+ [(VwW,T)] .
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COROLLARY 2.3. Let H be a spacelike hypersurface, and assume that
c: la,b] — (M,g) is a unit speed timelike geodesic which is orthogonal
to H at point p = c(a) € H. Suppose that o : [a,b] x (—¢,€) — (M, g)
be a variation of ¢ for the partition tg = a < t; = 0 < ty = b such
that a(a,s) € H and a(b,s) = q = c(b) for all s with —e < s < . If
W = a, 5as"(t,0) and N =W + (W,c)d, then

L"(0) = /b(N” + R(W,d')d, N)dt + (N(0), AogN')

a

NN o) + (Le(N), N o) + [(TwW,T)]

/(N”+R(Wc |tdt+z (t:), Ay, N')

a =0

+ (L (N), N} e(a) + [Www’ T>]o'

Proof. In view of Proposition 2.2 and equation
2

Z(N(tz)’ Ati (N/)> = (N(t)’ At(N,»lt:O + <N’ Nl)lc(a)

=0
it is only necessary to show that
~(VwW, D) = (VwW, T)lt—a = (Vv W, T)le=s

= (VwW,T)|t=a

= <LC’(N)» N>|c(a)-
To this end, we first note that a(b,s) = ¢ implies that a*%kb,s) =0
for all s which yields (ViwW,T) = 0. Also a(a,s) € H for all s with
—€ < § < € implies that a*%l(a’s) is tangential to H for all s, and
hence N(a) = a*%((a,o). Let v(s) = a(a, s) for all s with —e < s < e.
Extend the vector N(a) € T,H to a local vector field X along H with
Xoxy(s)= a*%ka’s) for all —e < s < e. Then

(Lo (N), Mo = (Vx@X, ¢(a))

by definition of second fundamental form. Also let  be a unit normal
field to H near p with n(p) = ¢/(a). Then we have

(VwW,T) = (VwW,n0 )|(4,0)l(a,0)

d
= El;<m77°a>|(a,0) — (W, Vwn o &)](a,0)-
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But since a*%l(a’s) is tangential to H, thus we obtain

(VwW, T)|i=a = —(W, Viwn 0 a)| (a0
= —(N(a), Vn@n)
= —(X, VX))
= ~X[p(X,n) + (VxX|p,n(a))
= (VxXlp,c(a))

= <Lc’(a)Na N>
as required. Here we have used the fact that since X|, = a*%ka,o),
X[p(X, 1) = (X 09(s), n(leco = 2(0) =0
14 777_d$ Y S, TS s=0—ds = 0.

]

DEFINITION 2.4. (Spacelike Hypersurface Index Form) Let ¢ : [a,b] —
(M, g) be a unit speed timelike geodesic which is orthogonal to a space-
like hypersurface H at c(a). Assume that Z is a piecewise smooth vector
field along ¢ which is orthogonal to ¢. If Z(a) # 0 and Z(b) = 0, then
the index of Z with respect to H is given by

IH(Za Z) = I(Z7 Z) + <Lc’(Z)aZ>]t=a

where,

b 1
12,2) = / (2" + R(Z,), B)edt + 3 (2(t:), D0, Z')
@ i=0
where the partition tp = a < t; =0 < t3 = b of [a, ] is chosen such that
Z is differentiable except at ¢; = 0.

PROPOSITION 2.5. Let ¢ : [a,b] — (M,g) be a unit speed timelike
geodesic segment and « : [a,b] X (—€,¢) — (M, g) is a variation of ¢
for the partition tg = a < t; = 0 < ty = b. Assume that Z = a*%
is a piecewise smooth vector field along ¢ which is orthogonal to c. If
Z(a) # 0 and Z(b) = 0, then we have

b
L”(O) = / <Z” + R(Zv C/)Cla Z>|tdt + <Lc’(Z)’ Z)lc(a)

F(Z(a), DaZ) + [Z(T, Z)}O
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Proof.

L'(0) = / (2" R, ) Dt + Zloxza,-), £ Z')
+ (Lo (2), Doy + |(V22, ;ﬂo
= [(& + R@ D)t + {22, D
+(2(a), 8aZ) + (2(0), 802) + [(V22,T)
-/ (24 R(Z, ), 2t 4 (L), D)
: (2(a), 8a2') + (2, vr2)| +|(VzZ, T)]O
- / 2+ R(2,d)Ys Bt + (Lol 2), Dl

+(Z(a), AaZ') + [Z(T, Z)]O.

Also we can rewrite L”(0) as follows

b
L”(O) = / <Z” + R(Z’ cl)cl’ Z)Itdt + <Lc’(Z)a Z>Ic(a)
+(Z(a), NaZ') + [Z(T, Z>]O

=Iy(Z,Z) + (Z(a), Do Z') + [Z(T, Z>]0.

Two hypersurfaces H;, Hy are said to be weakly parallel if every

geodesic v which intersects both faces is also orthogonal to other.

THEOREM 2.6. Let M be a Lorentzian manifold with a C°-singular
hypersurface S, and with a hypersurface H weakly parallel to S. Let
c:la,b] = M a < 0 < b be a unit speed timelike geodesic on orthogonal
to S with ¢(0) € S. If there is a nontrivial Jacobi field Y orthogonal

to ¢ with Y'(a) = —Ly(q)Y at c(a), and Y (b) = 0 with [Y(Y, T>] >0,

then c(t) is not of maximal length from c(b) to H.
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Proof. From

L'(0) = / ¥+ RV, ) V)t 4+ (Lo (V), Ve
+(¥(@),8Y) + [Y(T,Y)]

=(-Y.Y)

:«wwﬂﬁmmu@+wmxwmﬂwﬂywxﬂo

[Y(T, Y)]

LYl + (Y (@), 0Y") + [Y(T, V)]

il

0

we have L"(0) > 0.

THEOREM 2.7. Let M be a Lorentzian manifold with a C%-singular
hypersurface S, and with a hypersurface H weakly parallel to S. Let
c:la,b] = M a < 0 < b be a unit speed timelike geodesic with c(0) € S,

if there is a focal point b’ € [a,b] and [Y(T, Y)] = 0, then c(t) is not of
maximal length from c(b) to H.

Proof. We assume b’ > 0 for otherwise the geodesic c|[0,b/] doesn’t
cross the CC-singular hypersurface and the theorem is true by known
results. By hypothesis there exist a nontrivial Jacobi field Y; along ¢
with Y is orthogonal to ¢, and Y;(b') = 0 and Y{(a) = —Ly()Y1(a).

Define a piecewise unit smooth Jacobi field

Yi(t) : /
v(t) = DAGIE fa<t<b
0, if <t<b.

Since AyY{ # 0, we may construct smooth vector field W orthogonal
to ¢ such that W/(a) = W(a) = W(0) = W(b) = 0 and (W(¥), AyY') =
—1. Define vector field Z in W+(c) by

Z=1Y—rW
T

for r € R — {0}.
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Then

S =3

Yi(a)
(Lot ||Y1(a>n>

— (Lc(a)( )||Y18||)
:—(L'(a)( Y ())

and we have

(Z(a), £eZ') = (Z(a), Z'(a™))

and the Index Iy (Z, Z) is given by

In(2,2)
=1(Z,2) + (Lo(2), Z)i=a

1
_ I(lY _ W, ly _ W)+ (L ,(%Y W), Y =)

=I( Y —rW, Y—rW)+ (Y’ Y)tma

I

T—I(Y Y) = 2(Y, W) + r2(W, W) + %(-Y’, Y)|ema

_ 2 (/ (Z"+ R(Z,c), Z) |tdt+z At,Z’>)

,,.2

— Y, W) + r2(W, W) + —2(—Y’, Y)|tea

A
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therefore
1
Iy(2,7) =T—2(Z(a), Z'(a)) = 2V, W) + r2(W, W)
= LY (0), V(@) — 2v, W) + r2W, W)

1
+ ﬁ(‘yl, Y)li=a

= —2Y, W) + %W, W)
=2+ r3(W,W).

Also, we have Iy(Z,Z) > 0 and
b

L(0) = / (2" + R(Z,¢), Z)udt + (Lo (Z), Z)leay
+(2(a), 8a2') + | 2T, 2)]

= 14(2,2) + |2(T, Z)JO

=1 H(Z, Z ) > 0.
So, there exist small variations of ¢ with variation vector Z which
join H to ¢(b) and have length greater than c. O
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