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ABSTRACT

For a stationary queue with BMAP arrivals, Takine and Takahashi [8] present a relation—
ship between the queue length distributions at a random epoch and at a departure epoch by
using the rate conservation law of Miyazawa [6]. In this note, we derive the same rela—
tionship by using the elementary balance equation, “rate—in =-rate—out.” Along the same
lines, we additionally derive relationships between the queue length distributions at a
random epoch and at an arrival epoch. All these relationships hold for a broad class of fi—
nite— as well as infinite—capacity queues with BMAP arrivals.
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1. INTRODUCTION AND NOTATION

In this note, we consider the stationary queue lengths at various epochs of a
queue with a baich Markovian arrival process (BMAP). For this queue, Takine
and Takahashi [9] give a rigorous proof of a relationship between the queue
length distributions at a random epoch and at a departure epoch by using the rate
conservation law of Miyazawa [7]. In this paper, we derive the same relationship,
using the elementary balance equation, “rate in = rate out.” Along the same lines,
we additionally derive relationships between the queue length distributions at a
random epoch and at an arrival epoch. Relationships of this kind are useful in the
sense that once one obtains a solution for a certain epoch, e.g., for a departure
epoch, it is immediate to get solutions for the other epochs through these relation-
ships.

Remark 1: The BMAP is a versatile process that contains a large class of point
processes such as a Poisson process, a Markov modulated Poisson
process, and a batch Poisson process with correlated batch arrivals
(see, e.g., Lucantoni [5, 6]). Furthermore, we (as well as Takine and
Takahashi) do not assume any particular service mechanism, e.g.,
service discipline, number of servers, batch service, generalized vaca-
tions, etc. Thus the relationships presented in this paper hold for a
broad class of queues with BMAP arrivals.

In a queue with BMAP arrivals, groups of customers of size k arrive accord-
ing to a BMAP with representation {D,,k >0}, where D, is an mxm matrix.
Note that m denotes the number of phases in the underlying Markov chain
(UMC) that governs the arrival process. Specifically, suppose that the UMC is in

some phase 1<i<m at a certain epoch. Then, with transition rate (D,); ;, there

i
is a phase transition to j with a batch arrival of size k>1; with transition rate
(Dy);; there is a phase transition to j #1i without an arrival; (-D,);;, in par-
ticular, is defined to be (z:ﬂzil(Dk)i,j +z}.ﬂ. (Dy); ;) so that D = Z:=0Dk can
be the generator of the UMC. (For details on BMAP, see Lucantoni [5, 6].) Let 4
and 1, denote the arrival rates of individual customers and batches (or groups),
respectively. Then they are given by

A=ny kDe,
k=1
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Ag = nkae ,
k=1

where n is the stationary probability vector of the UMC, and e is a column vec-
tor of 1’s.

Now, we consider a bivariate process {L(t),S(t),t >0}, where L(t) denotes
the number of customers in the system and S(¢) the phase of the UMC at ¢>0.
We define the following probabilities for 120 and 1<j<m:

¥;,;: stationary probability that the process is in state (i,j) at a random epoch in
time

Yi =i Yim)

(We interpret y,; as the average amount of time the process spends in (i,j) per

unit time.)

yfj_ : stationary probability that a baich finds ¢ customers in the system when it
arrives and the UMC is in phase j just after its arrival

yi = f s vE)

(We interpret yfj” as the long-run fraction of batches that find ¢ customers in the

system and make transitions of the UMC into j.)

Y, ;- stationary probability that an individual customer finds ¢ customers in the
system (including those who precede her in her own batch — see Remark 2
below) when she arrives and the UMC is in phase j just after the arrival of
her batch

Vi =i Yim

(We interpret y;; as the long-run fraction of individual customers who find i

customers in the system with the phase of the UMC being j just after the arri-
vals of their batches.)

x; ;¢ stationary probability that an individual customer leaves behind i custo-

mers in the system (including those, if any, who follow her to depart at the
same time — see Remark 2 below) when she departs from the system and the
UMC is in phase j just after her departure
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X; = (X0, Xy )

(We interpret x; ; as the long-run fraction of individual customers who leave be-

hind i customers in the system with the phase of the UMC being j just after her

departure.)

Remark 2: Note that we are adopting a well-known convention (see e.g., Wolff
[11, p.388]) that customers arriving (departing) at the same time en-
ter (leave) the system not simultaneously but one at a time instanta-
neously. That is, we suppose that customers of an arriving batch
form a line to enter the system one after another. Likewise, when we
consider batch departures, such as in a batch-service queue, we sup-
pose that customers departing at the same time form a line to leave
the system one after another.

Throughout the note, we assume a stable system so that the rates and the
probabilities defined above are all well defined either in time-average or cus-
tomer-average sense. It is also assumed that the phase of the UMC just before a
departure is identical to that just after the departure. In cases where a phase
transition of the UMC (with and without an arrival) and departure(s) happens at
the same time, we assume that the phase transition occurs just before the depar-
ture(s).

2. A RELATIONSHIP BETWEEN THE QUEUE LENGTHS AT A RANDOM
EPOCH AND AT A DEPARTURE EPOCH

In this section, we derive the relationship between the queue length distributions
at a random epoch and at a departure epoch, using the elementary balance equa-
tion, “rate-in = rate-out.” Especially for those queues in which customers may
arrive and/or depart at the same time, we adopt the following convention, along
the same lines as those discussed in Remark 2:

Skip-free convention: When a batch arrival of size [ >1 makes a transition
from (1,7) to (1 +1,k), we suppose that this transition instantaneously
goes through a sequence of in-between states, ¢ +1,k), (1 +2,k), -+,
(i+1-1,k). That is, a giant transition from (i,;) to (G +[,k) is sup-

posed to be made up of [ instantaneous one-step transitions: (z,))
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to G+L, k), G+1,k) to ((+2,k), -, G+1—1,k) to I+, k). Similarly,
when a batch departure of size [ >1 makes a transition from (z, )
to (i-1,j), we suppose that this giant transition instantaneously
goes through a sequence of in-between states, 1-1,7), (-2,)), -+,
G-1+1,)).

This convention makes the process {L(z),S(t),i >0} skip-free with respect to L(t).
We need this skip-free convention in order to represent the transition rates into
and out of state (i,j) in terms of such quantities as x;; and y;;, which are de-
fined in an individual-customer-average sense (note that their definitions corre-

spond not to giant transitions but to instantaneous one-step transitions). Now, we
equate the transition rates into and out of state (i,/). As a result, we have

Theorem 1. (Takine and Takahashi [9]) For a queue with BMAP arrivals, Y(2)
and X(z) are related by

Y(2)D(z) = Az -1)X(2), ey
where Y(2)=3"" v, 2, X(z)= Zioxizi ,and D(z) = z;o:ODkzk )

Before presenting a proof of this theorem, we give an explanation of the way we
calculate the rate of the transitions caused by customer departures. Note that A

is the average number of individual customers departing per unit time and that

x;_1; 1s the fraction of those who leave behind the system with state (1-1,)).

Thus, Ax;_;; can be interpreted as the average number of individual customers
per unit time who depart to make transitions from (¢,7) to (i—1,j) — note that

such a transition may be a part of a giant transition. That is, Ax is the transi-

i-1,j

tion rate from (i,7) to (—1,j) caused by individual customer departures.

Proof. For the process {L(t),S(t),t =0}, it is obvious that the transition rates into
and out of (,j) are equal for all 120 and 1< j<m. We note that these transi-

tions are caused either by a phase transition of the UMC (with or without an ar-
rival) or by a departure.

We first consider the transition rate out of (¢,j). The out-rate caused by phase

transitions of the UMC is given by y; ;-(-Dy); ; + X, where X is the rate of giant

transitions instantaneously going through (7,/). (That is, X is the total transi-
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tion rate from {f-n,l)|In>0,1<i<m} to {G-n',j)In" >0} caused by batch
arrivals. Under the skip-free convention, this rate of instantaneous transitions
should be considered as a part of the transition rates into and out of (1,j). How-

ever, we do not have to elaborate more on X because, whatever it turns out to be,
it cancels out in the balance equation.) In addition, the rate out of (i,;) caused by

departures is given by Ax as discussed earlier. Thus we have, for t1 20 and

i-1,j

1<j<m,
transition rate out of (i,/) ={y; ;- (-Dg);; + X} + A%,y ;, 2

where x_,.=0.
1,7

Next, we consider the transition rate into (z,j). Note that the rate into (i,))
caused by phase transitions of the UMC is given by the total transition rate from
(k,1) to (,j) for all (k,0)=(,j) plus X, the giant transition rate instantane-
ously going through (Z,). In addition, the rate into (z,j) caused by departures is

given by Ax; ;. Thus we have, for 120 and 1<j<m,

Tom
transition rate into (i,) = {z Zyk!l(Di_k =Y Mo)j i+ X} + A%, - 3)
k=0[=1

Now equating (2) and (3), we have
i
DViDik =A% - Ax;. 4)
k=0

Finally, multiplying both sides of (4) by 2! and summing up for all {20, we
have the desired result. Q.E.D.

When the arrivals are Poisson with rate A (in this case, Dy =-4,D;=-4,

and Dj, =0, k>2), (1) simplifiesto y;, =x;, 120.

3. RELATIONSHIPS BETWEEN THE QUEUE LENGTHS AT A RANDOM
EPOCH AND AT AN ARRIVAL EPOCH

In this section, we present relationships between the stationary queue lengths at
a random epoch and at an arrival epoch. We view an arrival in two respects: a



A NOTE ON THE RELATIONSHIPS AMONG THE QUEUE LENGTHS 7

batch arrival and an individual customer arrival. First, we present a relationship
between the stationary queue length at a random epoch and the queue length
found by a batch arrival:

Theorem 2. For a queue with BMAP arrivals, Y(z) and Y#7(z) are related by

D-D,

g

Y7 (2) =Y(2) ®)

where Y¢7(2)=)" vz,

Proof. We note that 1, is the average number of batch arrivals per unit time and
that yf; is the fraction of batches that find ¢ customers in the system and make

transitions of the UMC into j. Thus, /lgyfj_ can be interpreted as the average

number of batch arrivals of such kind per unit time. This number obviously
equals the total transition rate out of {(i,))|1<I<m} caused by batch arrivals

that make transitions of the UMC into j. Thus we have, for i 20 and 1<j<m,
AgyEj = Zzyi,l(Dk)l,j ,
k=1i=1

which can be rewritten in a compact form as follows:
AvE =y, (D-Dy). ©)

Now, multiplying both sides of equation (6) by Z' and summing up for all 120,
we have the desired result. Q.E.D.

Next, we present a relationship between the stationary queue length at a
random epoch and the queue length found by an individual customer arrival (in-
chuding those who precede her in her own batch).

Theorem 3. For a queue with BMAP arrivals, Y(z) and Y (2) are related by

D -D(z)

Y @) =YE

)

where Y (2) = Zioyfzi )

Proof. We note that A is the average number of individual customers arriving
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per unit time and that y;; is the fraction of those who find ¢ customers in the
system with the phase of the UMC being j just after the arrivals of their batches.
Thus, Ay;; can be interpreted as the average number of individual customer arri-
vals of such kind per unit time. This number obviously equals the average num-
ber of batch arrivals per unit time that make transitions from {(k,})|k<i,1<

I<m}to {(n,j)In=2i+1}. Thus we have, for >0 and 1<j<m,

] ® m
Ayi=2 2 2D

k=0n=i+11=1

which can be rewritten in a compact form as follows:

/1Yi_ = z ZYan—k . €))

k=0n=i+1

Now, multiplying both sides of (8) by z' and summing up for all i >0, we have
the desired result. Q.E.D.

Note that when arrivals are Poisson with parameter 4, (7) simplifies to
y; =¥;, 120, which is a result of the well-known property called PASTA (Pois-
son arrivals see time averages [10]). We note that Lucantoni [6] establishes rela-

tionships, which are similar to those presented in Theorems 2 and 3, between the
virtual waiting time and the actual waiting time of the BMAP/G/1 queue.

4. ANOTE ON A FINITE-CAPACITY QUEUE WITH BMAP ARRIVALS

In this section, we consider a finite-capacity queue with BMAP arrivals. Let N
be the system capacity, such that at most N customers can be accommodated in
the system. We assume the Partial Rejection Policy (PRP; see, e.g., Takagi [8,
p-412]), in which only those individual customers who find the system full are
rejected. Specifically, suppose that a batch of size %k arrives when there are i
customers in the system. In the case of [+ % > N, the first 2— (N -1) individual
customers of the batch are accepted, while the last ( + k) — N individual custo-
mers are rejected. These rejected customers are supposed to find more than or
equal to N customers in the system (including their preceding customers in their
own batch) and depart from the system immediately after their arrivals. They are
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also supposed to leave behind those customers who follow them in the same ar-
riving batch, in addition to N customers who have already been accommodated
in the system (see Remark 2).

As discussed in Takine and Takahashi [9], a finite-capacity queue can be con-
sidered as a queue having a service mechanism in which an individual arriving
customer who finds more than or equal to N customers in the system (including
those who precede her in her batch) is expelled immediately after her arrival.
Thus the relationships derived in Theorems 1 through 3 have already included
the finite-capacity queue as well because we have not assumed any particular
service mechanism to derive them. Among others, we present a finite-capacity
version of Theorem 1 as follows:

Corollary 1. For a finite-capacity queue with BMAP arrivals under the PRP, y;

and x; are related by

M-

v.D, . =4x%x, ;-Ax;, 0<i<N-1,and 9

=
It

0

viDip =A%y . 10)

M=
LI

bl
Il

O

Proof. As discussed earlier, (4) still holds for all : >0 even in the case of a finite-
capacity queue. Note, however, that y, =0 for k> N +1, and that x; for 1> N
corresponds to the departures by rejected customers. While (9) is the same as (4),
(10) is obtained by summing up both sides of (4) for all ¢ > N . (This proof is based

on the comment made by an anonymous referee of the earlier version of this pa-

per.) Q.E.D.

Remark 3: Corollary 1 cannot be said to be new because it is a special case of the
general relationship (Theorem 1). However, Corollary 1 may deserve
an explicit presentation as above for its potential usefulness in the
analysis of finite-capacity queues with BMAP arrivals. Specifically,

note that Ax;, 0<i< N -1, of (9) and (10) can be replaced by 1'x;,
where A" :ﬂZialxie is the so-called effective arrival (or departure)
rate and x; :XL/ZZZSI x;e is the probability vector of the queue

length left behind by an accepted customer. This replacement is use-

ful because x; is easier to obtain through the analysis of the Markov
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chain embedded at departures than x; . Also, note that 4* can be rep-
resented in terms of x; (in the BMAP/G/1/N queue, for example, the
mean inter-departure time of accepted customers is given by (4")™! =
E(S)+x3(-D;')e (Gupta and Laxmi [1])). Once 2* and x! are ob-
tained, y; follows from the relationships (9) and (10) that are rewrit-

ten in terms of ' and x; (in place of (10), one may want to use

N
Zyi =7 )
1=0

5. CONCLUDING REMARKS

For a queue with BMAP arrivals, we have derived relationships among y,;, x;,
y#~, and y;, using a simple and intuitive argument. These relationships hold for
a broad class of finite- as well as infinite-capacity queues with BMAP arrivals

because we do not assume any particular service mechanism. Suppose one has a

solution for x; of a certain queueing system with BMAP arrivals (usually, x; or
x; can be obtained by considering the embedded Markov chain at departures (see,
e.g., Kasahara et al. [2], and Lucantoni [5])). Then y;, y¥7, and y; immediately

follow from the relationships. Without these relationships, such as (1) for example,
one may have to go through lengthy calculations to obtain y; from x; (see, e.g.,

Lucantoni et al. [4]).

Remark 4: The same relationships with respect to the number of customers in
the queue (excluding those in service) at various epochs can be estab-
lisheds as well. This is done by replacing all the probabilities with re-
spect to the number in the system with the corresponding probabiliti-
es with respect to the number in the queue. For example, we define
Y,(2) and X(2) as generating functions corresponding to Y(z) and

X(z), such that Y,(z) and X(2) represent the generating functions

of the probability vectors of the numbers in the queue at a random
epoch and at the epoch of a departure from the queue, respectively.
Then, by following the same arguments (that is, applying the balance
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equations to the queue rather than to the system), it is easy to have

Y,(2)D(2) = Az -1)Xy(2) .

The other relationships with respect to the number in the queue can be obtained
similarly. We omit the details.

We finally remark that the discrete-time analogues of the results presented

in this paper have been derived by using the similar arguments for queues with
D-BMAP (discrete-time BMAP) arrivals (Kim et al. [3]). We hope that our intui-
tive derivations and the results obtained would help readers better understand
the queues with BMAP arrivals.
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