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New Bounds using the Solution of the Discrete Lyapunov Matrix
Equation

Dong-Gi Lee, Gwang-Hee Heo, and Jong-Myung Woo

Abstract: In this paper, new results using bounds for the solution of the discrete Lyapunov
matrix equation are proposed, and some of the existing works are generalized. The bounds
obtained are advantageous in that they provide nontrivial upper bounds even when some

existing results yield trivial ones.
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1. INTRODUCTION

The Lyapunov matrix equation has played a
fundamental role in the analysis of several control
systems and design problems [1]. Thus, determining
the exact solution of the Lyapunov matrix equation is
essential in most applications. However, for certain
applications such as system stability analysis, the
exact solution is not required and reasonable bound
estimates are used since obtaining the solution itself
results in a very large computational burden as the
dimension of system matrices is increased. Therefore,
many researchers have been considerably attracted to
the estimation problem for the Riccati and Lyapunov
matrix equation [1-3, 4-7]. Also, recently the bound
estimates for continuous Lyapunov matrix equation
have been introduced by Fang et al. [1]. In this paper,
the discrete bounds are presented based on the
previous results [6, 7]. However, unfortunately all the
results for the bound estimates are based on the

assumption of 4(4,4])<1. Fang et al [1]

presented the upper bounds for continuous-time
Lyapunov equation without using the common

assumption that the largest eigenvalue of A+ AT s
negative definite, i.e., 4(A4+A’)<0. Hence, the
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objective of this paper is to extend this work to
discrete bounds without the assumption that the
system is asymptotically stable. Moreover, these
bounds are compared to previous bounds investigated
by many researchers for discrete-time Lyapunov
matrix equation [4-7]. Bounds for the trace and the
largest eigenvalues will be presented and special
attention will be placed on the upper bounds for the
trace due to their importance in robust stability and
performance analysis.

2. NOTATIONS AND PRELIMINARIES
In this paper, the following notations will be used:
4, e R is a real matrix, AqT denotes the matrix
transpose, tr(Aq) is the trace of 4,, l,(Aq)
denotes the eigenvalues of A4, (4;(4,)) are arranged

in descending order when they are real,
Le, 4(4)24(4,)2-24,(4,), Rel;(4,)) are

arranged n descending order, ie.,
Re4;(4,) 2 ReﬂQ(Aq) > Rel,,(Aq) .

Lemma 1 [13]: For symmetric positive semidefinite
matrices 4 and B,with 1<i, j<n,

iy j1(AB) S A(A)A,(B) if i+ j<n+],
Ay jon(ABY2 A(A)A;(B) if i+ j2n+1.

Lemma 2 [6]: For real symmetric matrices 4,8 >0,
k k

X Ai(A+B)S T[4 (A) + 4(B)]

I=1 /=1

with equality when £ =n.

Lemma 3 [6]: For symmetric »x#n matrices 4 and
B,
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k k
2 A (AB) < 2 A, (A A (B).
i=1 i=1
Lemma 4 [7] (Rayleigh-Ritz Inequality): For
any xeR" and A=A eR™",
A, (Ax" x<x" Ax< L (A)x" x.

Lemma 5 [6]: Let 4e€R™". Assume A=T' AT
where T is orthogonal and A is diagonal with
0<4(A)<1.Then

- =T+4+4%+-.

Now, let us consider the discrete Lyapunov equation

0=4]P4,-P+Q, (1)

where  4,,P,Q€ R 0>0

asymptotically stable matrix. The discrete-time
Lyapunov equation has unique positive definite
solution P.

and Aq iIs an

3. MAIN RESULTS

3.1. Discrete-time systems
Consider the linear shift-invariant discrete-time
system

x(k +1) = 4,x(k) + B u(k),

2
y(k)= qu(k).
where Aq,Bq, and Cq are given by
A4 A B
g1l ql12 gl
A":liA y }, qul:B }, and
q21 q22 q2

qu[cql Cq ]

3.2. Estimate bounds for lyapunov matrix equation
Many researchers [6-10] have developed results of

upper bounds for the discrete Lyapunov matrix

equation. All the existing results are based on the

assumption of 4 (AquT )<1. However, the stability

of 4, in discrete-time systems does not imply

that 4; (AquT } lies inside the unit circle. Similarly,

Fang et al. [l1] indicated a drawback in the
assumption, that the stability of A4 does not

guarantee that of A+ A" for continuous-time
systems. Hence, the objective of this paper is to
extend the previous works to discrete-time systems

and develop new results by removing this assumption.

Consider the algebraic Lyapunov matrix equation
T =
P-4, P4, +0=0. 3)

Since the previous works for upper bound estimates
do not cover the case that 4 (Aqu) is not inside

the unit circle, we should make the following
modification. Using the similarity transformation, we

set P=T"PT, O=T"QT, 4,=T"'4,T. Then,

the modified Lyapunov equation is obtained

TTPTY- (T AL T YT PTY(T ' 4,T)

)
+(TTor) =0.

Using (4) and Lemma 4, we obtain the following
theorems.
Theorem 1: For the discrete Lyapunov equation

),

AEYr(E"Q)
A AT
1- 44449

where |‘,:1(/“:\M1(;1q;1:), E=T'T" and T is

the transformation matrix from (4).
Proof: From Lemma 4,

tr(P) < if 4] <1

A(A)x" x < x4 x < H(4)x x (5)
Then, the following inequality holds for any vector
xeR":
x Px= xT;IqTﬁ;qu +x Ox ©
<A (Is)xszlqrgqx + xTQx,

(6) implies

P<tr(PAL4)+0. (7
Then, using (P4, A} )< 4, (4, 4] )ir(P), we obtain

tr(ﬁ)[l Ay (A AT )] <O, (8)
(8) becomes

(Q)

[1- 4 (4, 4])]

)]
From P=T'PT, O0=T"QT 4,=T7'4]T,

Since #(TTPT)=tr(TT' P)=t+(E"'P), (9) is
rewritten as follows:



International Journal of Control, Automation, and Systems Vol. 1, No. 4, December 2003 461

r(E”'0)

tr(E”'Pys ————=—.
[1-A(4,4,)]

(10)

From Lemma 1 and using #(E 71P) 24, (E'1 Yr(P),
we have

(E”'0)

tr(P) < A(E)———2)
- a4

(11)

Note that /1,,(E"l)=/11_1(E). This completes the

proof. £
Theorem 2: Let P satisfy the decentralized

discrete Lyapunov equation (4). Then we have

k 2 E—l
r(PY< 4(E)Y i AQ)AT ,
i=l Ay (I = Aq 4g)

~ AT
Where i=1,2,...,k Sn, /11(14qu)<1 .

Proof: From Komaroff [6], the solution to (3),
using integer [, is

P=34!) 0!
0 (12)
=Q+A) QA +(A] ) 04] +---.

For notational convenience, set AqA; =B . Then

A((4] Y Q) = A,(QB") . (13)
An application of Lemma 2 to (12), in view of (13),
gives
k _ k _ L R
S AP < DTAQ) + 4(OB) + 4(QB%) +---]
! !
\ (14)
<D AU+ 4B+ A2 (B) +-+],
/

by Lemma 3. Assuming /4, (B) <1, Lemma 5 may be
employed in (14) to obtain

k R k _ o
SAPYS S ADU- 44,40 (15)
! I

Since  (J-4,4;)  is
A

N

symmetric and
—itl (—;Iq,ZqT) = —l,-(;iq;IqT) , (15) is equivalent to the

inequality of Theorem 2. This completes the proof. _
Theorem 4: For the decentralized discrete
Lyapunov equation (4),

k
1& AEQ))
M(PYS H(E)| > 2
=1 [1- A4 (4, 4¢)]

where i=12,...,k<n.

b

k
Proof: Apply 4, (P)<Y A4(P) in (15). Then, the
!

bound shown above is derived easily. This completes
the proof. [
Theorem 4: Let the positive definite matrix P be

the solution to (4). If &y(4,) <1,

] AT~
AE "Q)Aq 4q

- + E‘lQ
(1-07 (4,)]

A(PYS A (E)| 4

;1<isn
MEVH(E'Q)
-7 (4,)]

Proof: (6) implies

1r(P) < (g 4,)+(E7'Q).

P<i(P)A)4,+0. (16)

From (16), we obtain

/11(13)5————’1‘(9)7 ) a7
[1-A4(4,4,)
Using (17) in (6), we have
5 MO |5 aTLA
P<|—A= 144 . 18
{1—&(@4)} ol 0 o

Then, we obtain the second inequality from (18). The
first inequality can also be derived from (18). Thi
completes the proof. L
Remark: The theorems presented above are based
on [6, 7] and modified to cover the case that the

common condition A4 (AquT )<1 is not valid. By

applying this modification, more generalized results
are obtained.

3.3. Example

Example 1: A discrete-time model is obtained
from its continuous-time model [14] by discretizing it
using MATLAB function ¢2d with the sampling
period A=0.8 . The corresponding discrete-time
system matrix is obtained as

0.8563 0.2245 . 1 0
with O = . Then,
-0.0001 0.5692 01

We obtain
A (P)y=52.1890,(P)=53.4127.

q
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The eigenvalues of AquT are given by
A =1.4403,
A, =0.1135.
Since 4(4, AqT) is unstable, this difficulty must be

overcome. Then, similarity transformation matrix 7
is introduced. For this example,

0.9235 0.0765
1.2118 -1.2118

matrix and its eigenvalues are obtained as
~ ~7 109577 0
Agdq = )
0 0.1708

J , and the Jordan-transformed

A =0.9577,
A, =0.1708.
Now, the assumption of 4, (AquT )<1 is removed.

Then, the upper bounds are given by the theorems
described in main results.
The bound in Theorem 1 yields

tr(P) £89.9098.

By Theorem 2, we obtain
tr(P)<80.1126.

From Theorem 3, we have
ﬂl(P) <79.5743.

The bounds in Theorem 4 yield
A (P)<79.5743,
tr(P)<94.9112.

Example 2: A discrete-time model is obtained

. ) . -09 2
from its continuous-time model 4= 0 11

by discretizing it using MATLAB function c2d
with the sampling period 4 =0.8. The corresponding
discrete-time system matrix is obtained as

0.9139 0.1810}

Using the system matrix 4, :[ 0  0.8958

1 0
with Q= [0 J. Then, we have

A(P)=52.189, tr(P)=53.413.
The eigenvalues of AquT are given by
A4 =1.4163,
Ay, =0.1266.
Since 4 (AquT )} is unstable, this difficulty should

be overcome. Then, similarity transformation matrix
T is introduced. For this example,

092326 0.07674
T 121410 -1.21410
transformed matrix and its eigenvalues are obtained as

} , and the Jordan-

ST | 095767 ~6.0051*107"%
11 26.0051%107'8 0.18724

A =0.9567,

A, =0.18724.

Now, the assumption of A, (AquT )<1 1s removed.

Then, the upper bounds are given by the theorems
described in Main results.
The bound in Theorem 1 yields

tr(P)<8991.

By Theorem 2, we obtain
tr(P) <80.113.

From Theorem 3, we have
/1] (P)<£79.574.

The bounds in Theorem 4 yield
A(P)<79.574,
tr(P)<94.911.

The numerical results indicate the best values for
each example. As shown above, the common
assumption used for the bound estimation problem
has been removed by applying similarity
transformation to estimate bounds so that more
generalized results can be obtained.

4. CONCLUSION

Investigation of stability analysis using bound
estimates for the solution of discrete Lyapunov
matrix equation is the topic of this paper. This issue is
inspired by the work of Fang er al. [1]. Based on the
upper bounds developed previously for discrete-time
Lyapunov matrix equation [6-8], those bounds are
extended and generalized with removal of the

assumption of 4 (AquT }<1 . When applying

similarity transformation to the theorems for discrete-
time system, the inequalities for the upper bounds
maintain their validity. The upper bound estimates are
based on the solution of Lyapunov matrix equation
for discrete-time system. The numerical results
illustrated by the Examples demonstrate that the
upper bounds for each system hold true.
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