불포화 폴리히드록시알칸오에이트 나노입자의 제조 및 특성

Preparation and Characterization of Unsaturated Poly(3-hydroxyalkanoate) Nanoparticles

  • 한정현 (한국화학연구원 화학소재연구부) ;
  • 김승수 (한국화학연구원 화학소재연구부) ;
  • 신병철 (한국화학연구원 화학소재연구부) ;
  • 이영하 (충남대학교 미생물학과) ;
  • 홍성욱 (한밭대학교 화학공학과)
  • 발행 : 2003.11.01

초록

미생물을 배양하여 불포화 폴리히드록시알칸오에이트 (PHAs)를 생합성하고 이 고분자를 유화상태에서 자발적인 용매 확산방법을 이용한 나노입자의 제조와 다양한 실험적 변수가 입자형성에 어떠한 영향을 미치는지에 대하여 조사하였다. 생합성된 고분자의 물리화학적 특성은 핵 자기 공명 분광계, ATR 적외선 분광분석, 시차 주사 열분석, 젤 투과크로마토그래피로 확인하였으며, 나노입자의 형태는 주사 전자 현미경을 통하여 관찰하였고 입자크기 및 분포는 전기영동 광산란 광도계를 사용하여 확인하였다. 초음파의 강도와 시간이 증가함에 따라 나노입자의 평균 입자직경은 감소하였고 고분자용액의 농도, 유화제의 검화도와 중합도의 증가에 따라서 나노입자의 평균 입자직경은 증가하였고 유화제의 농도 2∼4%에서 평균 입자직경이 최소였으며, 비용매인 에탄올의 첨가가 양용매인 클로로포름만 첨가하였을 때보다 평균 입자직경이 감소하는 것을 관찰하였다.

Nanoparticles with unsaturated poly(hydroxyalkanoate)s (UPHAs) biosynthesized with Pseudo-monas oleovorans were prepared by spontaneous emulsification solvent diffusion method. The influence of nanoparticle formation was investigated with various experimental parameters such as sonication conditions, sol-vent, surfactant and polymer contents, etc. The physical and chemical properties of UPHAS and its nanoparticles were characterized using $^1$H- and $\^$13/C-nuclear magnetic resonance spectroscopies, attenuated total reflection infrared spectroscopy, differential scanning calorimetry and gel permeation chromatography. The morphology of particles was observed using scanning electron microscope and the size and distribution of nanoparticles were measured with electrophoretic light scattering spectrophotometer. The mean diameter of particles decreased with increasing sonication amplitude and time. The addition of ethanol into UPHAS chloroform solution decreased the particle size presumably due to increased solvent diffusion into water phase. The particle size increased with increased the concentration of UPHAS solution. Under the 2-4% poly(vinyl alcohol) (PVA) aqueous solution the minimum mean diameter of particles was shown. The higher degree of hydrolysis and degree of polymerization of PVA increased the mean diameter of particles.

키워드

참고문헌

  1. Macromolecules v.23 Y.Doi;C.Abe https://doi.org/10.1021/ma00217a027
  2. Eur. J. Pharm. Biopharm v.56 A.S.Wissing;R.H.Muller https://doi.org/10.1016/S0939-6411(03)00040-7
  3. J. Controlled Release v.25 T.Niwa;H.Takeuchi;T.Hino;N.Kunou;Y.Kawashima https://doi.org/10.1016/0168-3659(93)90097-O
  4. Microbiol Polyesters Y.Doi
  5. Polymer Science and Technology v.2 Y.H.Lee
  6. Polymer Science and Technology v.2 D.H.Lee
  7. J.Mircrobiol.Biotechnol v.12 D.Y.Kim;Y.B.Kim;Y.H.Rhee
  8. J. Pharm. Biomed. Anal. v.13 A.G.Haugsberger;P.P.Deluca https://doi.org/10.1016/0731-7085(95)01276-Q
  9. J. Pharm. v.187 M.Hideki;K.Masso;T.Hirofumi;K.Yoshiaki
  10. Colloid Surface v.182 H.Y.Kwon;J.Y.Lee;S.W.Choi;Y.Jang;H.Kim https://doi.org/10.1016/S0927-7757(00)00825-6
  11. J. Pharm. v.196 A.Lamprecht;N.Ubrich;C-M.Lehr;M.Hoffman;P.Maincent
  12. J. Control. Release v.50 M.F.Zambaux;F.Bonneaux;R.Gref;P.Manincent;E.Dellacherie;M.J.Alonso;P.Labrude;C.Vigneron https://doi.org/10.1016/S0168-3659(97)00106-5
  13. Int. J. Pharm. v.149 M.F.Zambaux;K.Yoshiaki;N.Toshiyuki;H.Tomoaki;T.Hirofumi;K.Masao https://doi.org/10.1016/S0378-5173(96)04854-5