소수성 PTFE 막의 산소동위원소 분리특성

Separation Characteristics of Oxygen Isotopes with Hydrophobic PTFE Membranes

  • 김재우 (한국원자력연구소 양자광학기술개발부) ;
  • 박상언 (한국원자력연구소 양자광학기술개발부) ;
  • 김택수 (한국원자력연구소 양자광학기술개발부) ;
  • 정도영 (한국원자력연구소 양자광학기술개발부) ;
  • 고광훈 (한국원자력연구소 양자광학기술개발부) ;
  • 박경배 (한국원자력연구소 하나로이용연구단)
  • 발행 : 2003.09.01

초록

본 연구에서는 소수성 PTFE (Polytetrafluoroethylene) 분리막의 산소동위원소 분리특성을 확인하기 위해 물의 온도에 따른 수증기의 막 투과특성을 Air Cap Membrane Distillation (AGMD)과 Vacuum Enhanced Membrane Distillation (VEMD) 방법을 이용하여 각각 측정하였다. 투과된 수증기는 트랩에서 수거하여 투과플럭스 (permeation flux)를 측정하였고$ H_2^{16}O$$H_2^{18}O$의 성분비는 다이오드 레이저 흡수분광법을 이용하여 측정하였다. 분리막을 투과한 수증기에서 무거운 산소동위원소의 성분비가 감소함을 확인하였고 분리계수는 실험 조건에 따라 1.004~1.01로 측정되었다. 또한 분리막의 기공에 있는 공기가 산소동위원소의 분리에 미치는 영향을 확인하였고 기공내 공기가 없을 때 동위원소 분리계수가 증가함을 관찰하였다.

We measured the permeation characteristics of water with the hydrophobic PTFE membranes dependent on water temperature to confirm the separation of oxygen isotopes using Air Gap Membrane Distillation (AGMD) and Vacuum Enhanced Membrane Distillation (VEMD). Isotopic concentrations of $H_2^{16}O$ and $H_2^{18}O$ of the permeated water vapor were measured by Diode Laser Absorption Spectroscopy. Concentrations of the heavy oxygen isotopes in the permeated water vapor were decreased. Isotope separation coefficients for the hydrophobic PTFE membranes were 1.004∼1.01 depending on the experimental conditions. We observed the effects of air in membrane pores on the oxygen isotope separation. Isotope separation coefficients for the hydrophobic PTFE membranes without air in pores are higher than those for the membrane with air in pores.

키워드

참고문헌

  1. US Patent 5,057,225 v.15 Method of enrichment of oxygen-18 in natural water W. Alexander van Hook;A.G.Chmielewski;G.Z.Trznadel;N.Miljevic
  2. J. Membr. Sci. v.60 $d^ {16}O/^ {18}$O and H/D separation of liquid/vapor permeation of water through an hydrophobic membrane A.G.Chmielewski;G.Z.Trznadel;N.Miljevic;W. A. van Hook https://doi.org/10.1016/S0376-7388(00)81543-4
  3. Sep. Sci. Technol. v.30 no.7-9 Membrane distillation employed for separation of water isotopic compounds A.G.Chmielewski;G.Z.Trznadel;N.Miljevic;W. A. van Hook https://doi.org/10.1080/01496399508010368
  4. Sep. Sci. Technol. v.32 no.1-4 Multistage process of deuterium and heavy oxygen enrichment by membrane distillation A.G.Chmielewski;G.Z.Trznadel;N.Miljevic;W. A. van Hook https://doi.org/10.1080/01496399708003213
  5. 멤브레인 v.8 no.3 투과증발 막분리 공정에서 막하부의 공정조건의 중요성 염충균
  6. Spectrochimica Acta Part A v.58 Determination of the $^ {2}H/^ {1}H,\;^ {17}O/^ {16}O,\;and\;^ {18}O/^ {16}O$ isotope ratios in water by means of tunable diode laser spectroscopy at 1.39 ㎛ E.R.Th.Kerstel;G.Gagliardi;L.Gianfrani;H.A.J.Meijer;R. van Trigt;R.Ramaker https://doi.org/10.1016/S1386-1425(02)00053-7
  7. J. Membr. Sci. v.124 Review. Membrane Distillation Kevin W. Lawson;Douglas R. Lloyd https://doi.org/10.1016/S0376-7388(96)00236-0
  8. J. Membr. Sci. v.33 Heat and mass transfer in membrane distillation R.W.Schofield;A.G.Fane;C.J.D.Fell https://doi.org/10.1016/S0376-7388(00)80287-2
  9. Separation of Natural Isotopes A.Selecki
  10. Nuclear Chemical Engineering M.Benedict;T.H.Pigford;Hans W. Levi
  11. App. Opt. v.33 no.21 Extensive measurements of $H_2^ {16}O$ line frequencies and strengths: 5750 to 7965 $cm_{-1}$ Robert A. Toth https://doi.org/10.1364/AO.33.004851
  12. J. Membr. Sci. v.53 Gas and vapour transportation through microporous membranes. Ⅱ. Membrane ditaillation R.W.Schofield;A.G.Fane;C.J.D.Fell https://doi.org/10.1016/0376-7388(90)80012-B
  13. Physical Properties and Analysis of Heavy Water I.Kirshenbaum