Fault Location Using Neuro-Fuzzy for the Line-to-Ground Fault in Combined Transmission Lines with Underground Power Cables

뉴로-퍼지를 이용한 혼합송전선로에서의 1선지락 고장시 고장점 추정

  • Published : 2003.10.01

Abstract

This paper describes the fault location calculation using neuro-fuzzy systems in combined transmission lines with underground power cables. Neuro-fuzzy systems used in this paper are composed of two parts for fault section and fault location. First, neuro-fuzzy system discriminates the fault section between overhead and underground with normalized detail coefficient obtained by wavelet transform. Normalized detail coefficients of voltage and current in half cycle information are used for the inputs of neuro-fuzzy system. As the result of neuro-fuzzy system for fault section, impedance of selected fault section is calculated and it is used as the inputs of the neuro-fuzzy systems for fault location. Neuro-fuzzy systems for fault location also consist of two parts. One calculates the fault location of overhead, and the other does for underground. Fault section is completely classified and neuro-fuzzy system for fault location calculates the distance from the relaying point. Neuro-fuzzy systems proposed in this paper shows the excellent results of fault section and fault location.

Keywords

References

  1. 정채균, 이종범, 윤양웅, '혼합송전계통에서 웨이브렛 변환을 이용한 고장점 탐색 알고리즘에 관한 연구', 대한전기학회 논문지, Vol. 51, No. 5, pp. 247-254, 2002
  2. 하체웅, 이종범, '지중송전케이블용 디지털 거리계전 알고리즘 개선', 대한전기학회 논문지, Vol. 49, No. 12, pp. 595-601, 2000
  3. 전력계통 보호계전 시스템 기술 조사전문 위원회, '전력계통 보호계전 시스템 기술의 현황과 전망', 기술조사보고, 제 14호, 1999
  4. Thomas Dalstein, Bernd Kulicke, 'NEURAL NETWORK APPROACH TO FAULT CLASSIFICATION FOR HIGH SPEED PROTECTIVE RELAYING', IEEE Trans. Power Delivery, Vol. 10, No. 2, pp, 1002-1011, April 1995 https://doi.org/10.1109/61.400828
  5. D.V. Coury, D.C. Jorge, 'Artificial Neural Network Approach to Distance Protection of Transmission Lines', IEEE Trans. Power Delivery, Vol. 13, No. 1, pp. 102-108, January 1998 https://doi.org/10.1109/61.660861
  6. Huisheng Wang, W.W.L. Keerthipala, 'Fuzzy-Neuro Approach to Fault Classification for Transmission Line Protection', IEEE Trans. Power Delivery, Vol. 13, No. 4, pp 1093-1104, October 1998 https://doi.org/10.1109/61.714467
  7. Alessandro Ferrero, Silvia Sangiovanni Ennio Zappitelli, 'A FUZZY-SET APPROACH TO FAULT-TYPE IDENTIFICA -TION IN DIGITAL RELAYING', IEEE Trans. Power Delivery, Vol. 10, No. 1, pp. 169-175, January 1995 https://doi.org/10.1109/61.368401
  8. P.K.Dash, A.K.Pradhan, G.Panda, 'A Novel Fuzzy Neural Network Based Distance Relaying Scheme', IEEE Trans, Power Deliver Vol. 15, No. 3, pp. 902-907, 2000 https://doi.org/10.1109/61.871350
  9. 오성권, '프로그래밍에 의한 컴퓨터지능', 내하출판사
  10. Wavelet Toolbox For Use with MATLAB
  11. 변성현, 김현, 김철환, 채영무, 김일동, 한경남 '송전선로의 고장검출을 위한 Mother Wavelet 선정에 관한 연구', 대한전기학회 논문지, Vol. 47, No. 9, pp.1277-1282, 1998
  12. 홍동석, 이종범, '웨이블렛 변환을 이용한 변압기 보호계전 알고리즘', 대한전기학회 논문지, Vol. 52A., No. 2, pp. 134-141, 2003
  13. 권기백, 서희석, 윤석무, 신명철, '웨이브렛 변환을 바탕으로 한 신경회로망을 이용한 전력용 변압기 보호 계전기법', 대한전기학회 논문지, Vol. 51A, No. 3, pp. 134-142 MAR. 2002
  14. 강상희, 권태원, '최소자승법을 이용한 고속 거리계전 알고리즘', 대한전기학회 논문지, Vol. 48A, No. 7, pp 855-862, 1999
  15. Jyh-Shing Roger Jang, 'ANFIS: Adaptive-Network -Based Fuzzy Inference System', IEEE Tran. SYSTEM, MAN, AND CYBERNETICS, Vol. 23, No. 3, pp 665-685, 1993 https://doi.org/10.1109/21.256541
  16. 이현협, 문경일, 'Matlab을 이용한 퍼지-뉴로', 도서출판 아진
  17. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, 'Neuro-Fuzzy and Soft Computing', Prentice Hall 1996
  18. 강상희, 권태원, '최소자승법을 이용한 고속 거래계전 알고리즘' 대한전기학회 논문지, Vol. 48A, No. 7, pp. 855-862, 1999