Application of the Chebyshev-Fourier Pseudo spectral Method to the Eigenvalue Analysis of Circular Mindlin Plates with Free Boundary Conditions

  • Lee, Jinhee (Department of Mechano-Informatics, Hongik University)
  • Published : 2003.10.01

Abstract

An eigenvalue analysis of the circular Mindlin plates with free boundary conditions is presented. The analysis is based on the Chebyshev-Fourier pseudospectral method. Even though the eigenvalues of lower vibration modes tend to convergence more slowly than those of higher vibration modes, the eigenvalues converge for sufficiently fine pseudospectral grid resolutions. The eigenvalues of the axisymmetric modes are computed separately. Numerical results are provided for different grid resolutions and for different thickness-to-radius ratios.

Keywords

References

  1. Blevins, R. D., 1979, Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, New York, pp. 240-240
  2. Boyd, J. P., 1989, Chebyshev and Fourier spectral methods, Lecture note in engineering 49, Spinger-Verlag, Berlin, pp. 213-235
  3. Deresiewicz, H., 1956, 'Symmetric Flexural Vibrations of a Clamped Disk,' Journal of Applied mechanics, Vol. 12, pp. 319-319
  4. Deresiewicz, H. and Mindlin, R. D., 1955, 'Axially Symmetric Flexural Vibration of a Circular Disk,' Transactions of ASME Journal of Applied Mechanics, Vol. 22, pp. 86-88
  5. Fornberg, B., 1996, A Practical Guide to Pseudospectral Methods, Cambridge University Press, pp. 87-88 and pp. 110-111
  6. Gupta, U. S. and Lal, R., 1985, 'Axisymmetric Vibrations of Polar Orthotropic Mindlin Annular Plates of Variable Thickness,' Journal of Sound and Vibration, Vol. 98, No. 4, pp. 565-573 https://doi.org/10.1016/0022-460X(85)90261-5
  7. Irie, T., Yanada, G. and Aomura, S., 1979, 'Free Vibration of a Mindlin Annular plate of Varying Thickness,' Journal of Sound and Vibration, Vol. 66, No. 2, pp. 187-197 https://doi.org/10.1016/0022-460X(79)90665-5
  8. Irie, T., Yamada, G. and Aomura, S., 1980, 'Natural Modes and Natural Frequencies of Mindlin Circular Plates,' Journal of Applied Mechanics, Vol. 47, pp. 652-655
  9. Irie, T., Yamada, G. and Takagi, K., 1982, 'Natural Frequencies of Thick Annular Plates,' Journal of Applied Mechanics, Vol. 49, pp. 633-638
  10. Lee, J., 2002, 'Eigenvalue Analysis of Circular Mindlin Plates Using the Pseudospectral Method,' Transactions of KSME A, Vol. 26, No. 6, pp. 1169-1177. (in Korean with English Abstract)
  11. Lee, J., 2003, 'Eigenvalue Analysis of Rectangular Mindlin Plates by Chebyshev Pseudospectral Method,' KSME International Journal, Vol. 17, No. 3, pp. 370-379
  12. Liew, K. M., Han, J. B. and Xiap, Z. M., 1997, 'Vibration Analysis of Circular Mindlin Plates Using Differential Quadrature Method,' Journal of Sound and Vibration, Vol. 205, No. 5, pp. 617-630 https://doi.org/10.1006/jsvi.1997.1035
  13. Mikami, T. and Yoshimura, J., 1984, 'Application of the Collocation Method to Vibration Analysis of Rectangular Mindlin Plates,'Compter & Structures, Vol. 18, No. 3, pp. 425-432 https://doi.org/10.1016/0045-7949(84)90062-2
  14. Mindlin, R. D., 1951, 'Influence of Rotary Inertia and Shear on Flexural Motion of Isotropic, Elastic Plates,' Transactions of ASME Journal of Applied Mechanics, Vol. 18, pp. 31-38
  15. Pyret, R. and Taylor, T. D., 1990, Computational methods for fluid flow, Springer-Verlag, pp. 227-247
  16. Soni, S. R. and Amba-Rao, C. L., 1975, 'On Radially Symmetric Vibrations of Orthotropic Non-uniform Disks Including Shear Deformation,' Journal of Sound and Vibration, Vol. 42, No. 1, pp. 57-63 https://doi.org/10.1016/0022-460X(75)90302-8