DOI QR코드

DOI QR Code

에어로졸 중화기의 성능이 고하전 입자의 크기분포 측정에 미치는 영향

Effect of Performance of Aerosol Charge Neutralizers on the Measurement of Highly Charged Particles Using a SMPS

  • 지준호 (연세대학교 나노과학기술연구단) ;
  • 배귀남 (한국과학기술연구원 지구환경연구센터) ;
  • 황정호 (연세대학교 기계공학과)
  • 발행 : 2003.10.01

초록

A SMPS(scanning mobility particle sizer) system measures the number size distribution of particles using electrical mobility detection technique. An aerosol charge neutralizer, which is a component of the SMPS, is a bipolar charger using a radioactive source to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. In this study, the effect of the particle charging characteristics of two aerosol charge neutralizers on the measurement using a SMPS system was experimentally investigated for highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0.5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.3 to 3.0 L/min. The results show that the non-equilibrium character in particle charge distribution appears as the air flow rate increases although the particle number concentration is relatively low in the range of 1.5∼2x10$^{6}$ particles/㎤. The low neutralizing efficiency of the $^{85}$ Kr aerosol charge neutralizer for highly charged particles can cause to bring an artifact in the measurement using a SMPS system. However, the performance of the $^{210}$ Po aerosol charge neutralizer is insensitive to the air flow rate.

키워드

참고문헌

  1. Flagan, R. C., 1998, 'History of Electrical Aerosol Measurements,' Aerosol Sci. Technol., Vol. 28, pp. 301-380 https://doi.org/10.1080/02786829808965530
  2. Fuchs, N. A., 1964, The Mechanics of Aerosols, Pergamon Press, Oxford
  3. Wiedensohler, A., 1988, 'An Approximation of the Bipolar Charge Distribution for Particles in the Submicron Size Range,' J. Aerosol Sci., Vol. 19, pp. 387-389 https://doi.org/10.1016/0021-8502(88)90278-9
  4. Hoppel, A. and Frick, G. M., 1986, 'Ion-Aerosol Attachment Coefficients and the Steady-State Charge Distributions on Aerosols in a Bipolar Ion Environment,' Aerosol Sci. Tech., Vol. 5, pp. 1-21 https://doi.org/10.1080/02786828608959073
  5. Adachi, M., Kousaka, Y., and Okuyama. K., 1985, 'Unipolar and Bipolar Diffusion Charging of Ultrafine Aerosol Particles,' J. Aerosol Sci., Vol. 16, pp. 109-123 https://doi.org/10.1016/0021-8502(85)90079-5
  6. Liu, B. Y. H. and Pui, D. Y. H., 1977, 'On Unipolar Diffusion Charging of Aerosols in the Continuum Regime,' J. Colloid and Interface Sci., Vol. 58, pp. 142-149 https://doi.org/10.1016/0021-9797(77)90377-0
  7. Liu, B. Y. H., Pui, D. Y. H., and Lin, B. Y., 1986, 'Aerosol Charge Neutralization by a Radioactive Alpha Source,' Part. Charact., Vol. 3, pp. 111-116 https://doi.org/10.1002/ppsc.19860030304
  8. Liu, B. Y. H. and Pui, D. Y. H., 1986, 'Aerosol Charging and Neutralization and Electrostatic Discharge in Clean Rooms,' The J. Environmental Sciences, Vol. 33, pp. 42-46
  9. Hoppel, A. and Frick, G. M., 1990, 'The Nonequilibrium Character of the Aerosol Charge Distributions Produced by Neutralizers,' Aerosol Sci. and Tech., Vol. 12, pp. 471-496 https://doi.org/10.1080/02786829008959363
  10. Kousaka, Y., Adachi, M., Okuyama, K., Kitada, N., and Motochi, T., 1983, 'Bipolar Charging of Ultrafine Aerosol Particles,' Aerosol Sci. and Tech., Vol. 2, pp. 421-427 https://doi.org/10.1080/02786828308958645
  11. Covert, D., Wiedensohler, A., and Russell, L., 1997, 'Particle Charging and Transmission Efficiencies of Aerosol Charge Neutralizers,' Aerosol Sci. and Tech., Vol. 27, pp. 206-214 https://doi.org/10.1080/02786829708965467
  12. Adachi, M., Okuyama, K. Kousaka, Y., Kozuru, H., and Pui, D. Y. H., 1989, 'Bipolar Diffusion Charging of Aerosol Particles Under High Particle/Ion Concentration Ratios,' Aerosol Sci. and Tech., Vol. 11, pp. 144-156 https://doi.org/10.1080/02786828908959307
  13. Alonso, M., Kousaka, Y., Nomura, T., Hashimoto, N., and Hashimoto, T., 1997, 'Bipolar Charging and Neutralization of Nanometer-Sized Aerosol Particles,' J. Aerosol Sci., Vol. 28, pp. 1479-1490 https://doi.org/10.1016/S0021-8502(97)00036-0
  14. Alonso, M., Alguacil. F. J., Nomura, T., and Kousaka, Y., 2001, 'Examination of After-charging Effect Downstream of an Aerosol Neutralizer,' J. Aerosol Sci., Vol. 32, pp. 289-294
  15. Reischl, G. P., Makela, J. M., Karch, R., and Necid, J., 1996, 'Bipolar Charging of Ultrafine Particles in the Size Range below 10 nm,' J. Aerosol Sci., Vol. 27, pp. 931-949 https://doi.org/10.1016/0021-8502(96)00026-2
  16. Mayya, Y. H. and Sapra, B. K., 1996, 'Variation of the Aerosol Charge Neutralization Coefficient in the Entire Particle Size Range,' J. Aerosol Sci., Vol. 27, pp. 1169-1178 https://doi.org/10.1016/0021-8502(96)00051-1
  17. Ji, J. H., Bae, G. N., and Hwang, J., 2003, 'Nano Particle Charging Characteristics of Aerosol Charge Neutralizers,' KSME Journal B, accepted for publication https://doi.org/10.3795/KSME-B.2003.27.10.1489
  18. TSI Corporation, 1999, Model 3936 SMPS(Scanning Mobility Particle Sizer) Instruction Manual
  19. Ahn, K. H., Kim, N. H., Lee, J. H., and Bae, G. N., 1996, 'Particle Path and Performance Evaluation of Differential Mobility Analyzer,' KSME Journal B, Vol. 20, pp. 2005-2013
  20. Knutson, E. O. and Whitby, K. T., 1975, 'Aerosol Classification by Electrical Mobility: Apparatus, Theory and Applications,' J. Aerosol Sci., Vol. 6, pp. 443-451 https://doi.org/10.1016/0021-8502(75)90060-9
  21. Hoppel, W. A., 1978, 'Determination of the Aerosol Size Distribution from the Mobility Distribution of the Charged Fraction of Aerosols,' J. Aerosol Sci., Vol. 9, pp. 41-54 https://doi.org/10.1016/0021-8502(78)90062-9
  22. Ji, J. H., Pae, Y. I., Hwang, J., and Bae, G. N., 2003, 'Generation of Nano Particles Using an Electrically Heated Tube Furnace,' KSME Journal B, submitted https://doi.org/10.3795/KSME-B.2003.27.12.1734