점토의 분산성이 PP/점토 나노복합재료의 열안정성에 미치는 영향

Effects of Dispersivity of Clay on Thermal Stabilities of PP/Clay Nanocomposites

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 전병렬 (한국화학연구원 화학소재연구부) ;
  • 송시용 (한국화학연구원 화학소재연구부) ;
  • 최길영 (한국화학연구원 화학소재연구부) ;
  • 이종문 (전북대학교 고분자공학과)
  • 발행 : 2003.09.01

초록

표면처리된 몬모릴로나이트 (montmorillonite, MMT)가 PP 나노복합재료의 열안정성에 미 치는 영향을 조사하였다. $Na^{+}$-MMT는 dodecylammonium chloride를 이용하여 유기적으포 개질하였다. 비표면적 ( $S_{BET}$), 평형확산압력 ($\pi$$_{e}$ ), 그리고 비극성 요소 (${\gamma}$ $s^{L}$)를 포함하는 표면 특성은 $N_2$ 흡착을 이용하는 BET 방법을 이용하여 고찰하였다. 또한, 나노복합재료의 열안정성은 시차주사열량계 (DSC)와 열중량 분석기 (TGA)를 통해 알아보았다. 실험 결과, 오존처리된 dodecylammonium chloride (DA-MK ( $O_3$))의 $\pi$$_{e}$${\gamma}$ $s^{L}$는 1.7과 3.5 mJ/ $m^2$로 증가하였는데, 이는 미세기공이 증가하기 때문으로 판단된다. DSC 결과로부터, PP/DA-MK와 PP/DA-MK ( $O_3$)의 용융 온도와 결정화 온도는 순수한 PP보다 더 높았는데, 이러한 결과는 나노크기의 DA-MK가 PP 결정화를 위한 핵생성 효과를 유도하기 때문으로 판단된다. 또한, PP/DA-MK ( $O_3$) 나노복합재료의 열안정성은 64 kJ/mol 향상되었는데, 이는 PP 매트릭스 내 DA-MK ( $O_3$)의 분산성 향상에 기인하는 것으로 판단된다.단된다.다.

The effect of ozone surface treatment of montmorillonite (MMT) was investigated in thermal stabilities of polypropylene (PP) nanocomposites. Sodium montmorillonite (Na$\^$+/-MMT) was organically modified with dodecylammonium chloride. The surface properties of MMT, including the specific surface area (S$\_$BET/), equilibrium spreading pressure ($\pi$$\_$e/), and London dispersive component (${\gamma}$s$\^$L/), were studied by the BET method with $N_2$ adsorption. Also, the thermal stabilities of the nanocomposites were investigated in DSC and TGA. As experimental results, $\pi$$\_$e/ and ${\gamma}$s$\^$L/ of the ozonized dodecylammonium chloride (DA-MK ( $O_3$)) were increased in about 1.7 and 3.5 mJ/ $m^2$, resulting from the increasing of the micropores. From the DSC results, it was found that the melting temperature and crystallization temperature of PP/DA-MK and PP/DA-MK ( $O_3$) were higher that those of pure PP. These results were explained that dodecylammonium chloride of nano-scale led to a nucleation effect for PP crystallization. Also, it was found that E$\_$t/ of the PP/DA-MK ( $O_3$) nanocomposies was increased within about 64 kJ/mol. These results were probably explained by the improvement of dispersivity of DA-MK ( $O_3$) in a PP matrix.

키워드

참고문헌

  1. Handbook of Composites C.E.Knox;G.Lubin(Ed.)
  2. Composite Materials Handbook M.M.Schwartz
  3. Macromol. Chem. Phys. v.200 C.Zilig;R.Mulhaupt;J.Finter https://doi.org/10.1002/(SICI)1521-3935(19990301)200:3<661::AID-MACP661>3.0.CO;2-4
  4. J. Appl. Polym. Sci. v.80 S.H.Hsiao;G.S.Liou;L.M.Chang https://doi.org/10.1002/app.1306
  5. J. Colloid Interf. Sci. v.251 S.J.Park;D.I.Seo;J.R.Lee https://doi.org/10.1006/jcis.2002.8379
  6. Polymer v.42 T.Agag;T.Koga;T.Takeichi https://doi.org/10.1016/S0032-3861(00)00824-7
  7. Polym. Degrad. Stabil. v.77 J.Wang;J.Du;J.Zhu;C.A.Wilkie https://doi.org/10.1016/S0141-3910(02)00055-1
  8. Chem. Mater. v.5 P.B.Messersmith;E.P.Giannelis https://doi.org/10.1021/cm00032a005
  9. Polymer v.42 X.Kornmann;H.Lindberg;L.A.Berglund https://doi.org/10.1016/S0032-3861(00)00346-3
  10. Polymer v.42 N.Salahuddin;M.Shehata https://doi.org/10.1016/S0032-3861(01)00253-1
  11. Mater. Lett. v.22 A.Alelah;N.S.Ei-deen;A.Hiltner;E.Baer;A.Moet https://doi.org/10.1016/0167-577X(94)00167-7
  12. J. Mater. Res. v.8 A.Usuki;Y.Kojima;M.Kawasumi;A.Okada;Y.Fukushima;T.Kurauchi;O.Kamigaito https://doi.org/10.1557/JMR.1993.1179
  13. J. Appl. Polym. Sci. v.71 L.Liu;Z.Qi;X.Zhu https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1133::AID-APP11>3.0.CO;2-N
  14. J. Colloid Interf. Sci. v.206 S.J.Park;J.B.Donnet https://doi.org/10.1006/jcis.1998.5672
  15. J. Adhes. Sci. Technol. v.14 S.J.Park;J.S.Jin;J.R.Lee https://doi.org/10.1163/156856100742483
  16. Eur. Polym. J. v.36 C.D.Rio;M.C.Ojeda;J.L.Acosta https://doi.org/10.1016/S0014-3057(99)00239-6
  17. Carbon v.35 C.A.Frysz;D.D.L.Chung https://doi.org/10.1016/S0008-6223(97)00083-3
  18. J. Colloid Interf. Sci. v.244 S.J.Park;J.S.Kim https://doi.org/10.1006/jcis.2001.7920
  19. Carbon v.36 X.Fu;W.Lu;D.D.L.Chung https://doi.org/10.1016/S0008-6223(98)00115-8
  20. Handbook of Electrostatic Processes: Ozone Generation and Applicaations U.Kogelschatz;B.Eliasson
  21. J. Am. Chem. Soc. v.60 S.Brunauer;P.H.Emmett;E.Teller https://doi.org/10.1021/ja01269a023
  22. J. Catal. v.4 B.C.Lippens;J.H.de Boer https://doi.org/10.1016/0021-9517(65)90307-6
  23. AIChE. J. v.46 S.U.Rege;R.T.Yang https://doi.org/10.1002/aic.690460408
  24. J. Colloid Interf. Sci. v.232 S.J.Park;J.S.Kim https://doi.org/10.1006/jcis.2000.7160
  25. Principles of Colloid and Surface Chemistry(3rd Ed.) P.C.Hiemenz;R.Rajagopalan
  26. Anal. Chem. v.35 H.H.Horowitz;G.Metzger https://doi.org/10.1021/ac60203a013