DOI QR코드

DOI QR Code

Synthesis and Characterization of Au/TiO2 Nanoparticles with Core-shell Structure

Core-shell 구조의 Au/TiO2 나노 미립자의 합성 및 특성 평가

  • 유연태 (한국지질자원연구원 자원활용소재연구부) ;
  • Published : 2003.09.01

Abstract

Au/TiO$_2$ core-shell structure nanoparticles were synthesised by sol-gel process, and the morphology and crystallinity of TiO$_2$ shell were investigated by TEM and UV-Vis. absorption spectrometer. Au/TiO$_2$ core-shell structure nanoparticles could be prepared by the hydrolysis of TOAA (Titanium Oxide Acethylacetonate) in Au colloid ethanol solution with $H_2O$. The thickness of TiO$_2$ shell on the surface of Au particles was about 1 nm. To investigate the crystallinity of TiO$_2$ shell, UV light with 254 nm and radioactive lay of $^{60}$ CO were irradiated on the TiO$_2$ coated Au colloid ethanol solution. The surface plasmon phenomenon of Au nanoparticles appeared only when the radioactive lay was irradiated on the TiO$_2$ coated Au colloid ethanol solution. From these results, it was found that the TiO$_2$ shell was amorphous and the MUA (Mercaptoundecanoic Acid) layer on the Au particle for its dispersion didn't act as an obstacle to disturb the movement of electron onto the surface of Au particle.

Au/TiO$_2$ core-shell 구조 나노 미립자가 졸-겔법에 의해서 제조되었고, TiO$_2$ shell의 형상과 결정성이 TEM과 UV-Vis. absorption spectrometer에 의해서 조사되었다. Au/TiO$_2$ core-shell 나노 미립자는 Au 콜로이드 에탄올 수용액 중에서 TOAA(Titanium Oxide Acethylacetonate)의 가수분해에 의해 합성될 수 있었다. Au 나노 미립자의 표면에 형성된 TiO$_2$ shell의 두께는 약 1 nm이었다. TiO$_2$ shell의 결정성을 조사하기 위하여. TiO$_2$가 피복된 Au 콜로이드 에탄올 용액에 254 nm의 자외선과 $^{60}$Co의 방사선을 조사하였다. Au 나노 미립자의 surface plasmon 현상은 방사선이 조사되었을 때만 나타났고, 이 결과로부터 TiO$_2$ shell은 비정질 상태임을 알 수 있었으며, Au의 분산성 향상을 위해 표면에 처리된 MUA(Mercaptoundecanoic Acid)층은 전자의 이동을 방해하는 장애물로 작용하지 않음을 확인할 수 있었다.

Keywords

References

  1. Langmuir v.17 no.16 Synthesis and Characterization of Monodisperse Core-shell Colloidal Spheres of Zinc Sulfide and Silica K.P.Velikov;A.Blaaderen https://doi.org/10.1021/la0101548
  2. J. Mater. Chem. v.10 Silica Encapsulation of Quantum Dots and Metal Clusters P.Mulvaney;L.M.Liz Marzan;M.Glersig;T.Ung https://doi.org/10.1039/b000136h
  3. Langmuir v.14 Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions T.Ung;L.M.Liz Marzan;P.Mulvaney https://doi.org/10.1021/la980047m
  4. J. Am. Chem. Soc. v.116 Preparation and Properties of Tailored Morphology, Monodisperse Colloidal Silica-cadmium Sulfide Nanocomposites S.Chang;L.Liu;S.A.Asher https://doi.org/10.1021/ja00094a032
  5. J. Mag. and Mag. Mater. v.252 Core-shell Particles Consisting of Cobalt Ferrite and Silica as Model Ferrofluids [CoFe₂O₄-SiO₂Coreshell Particles] J.Wagner;T.Autenrieth;R.Hempelmann https://doi.org/10.1016/S0304-8853(02)00729-1
  6. Adv. Mater. v.11 no.12 Layer-by-layer Assembly of Core-shell Magnetite Nano Particles : Effect of Sillca Coating on Interparticle Interactions and Magnetic Properties F.G.Aliev;M.A.Correa-Duarte;A.Mamedov;J.W.Ostrander;M.Giersig;L.M.Liz-Marzan;N.A.Kotov https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1006::AID-ADMA1006>3.0.CO;2-2
  7. Langmuir v.12 Surface Plasmon Spectroscopy of Nanosized Metal Particles P.Mulvaney https://doi.org/10.1021/la9502711
  8. Nano Lett. v.3 no.3 Charge Distribution UV-irradiated TiO₂and Gold Nanoparitces : Determination of Shift in the Fermi Level M.Jakob;H.Levanon https://doi.org/10.1021/nl0340071
  9. J. Chem. Phys. v.116 no.15 Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles J.J.Mock;M.Barbic;D.R.Smith;D.A.Schultz;S.Schultz https://doi.org/10.1063/1.1462610