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RESIDUALS IN MINIMAL RESOLUTION IV DESIGNS

PeEN-HwaNG Liau!

ABSTRACT

In unreplicated factorial or fractional factorial experiments, the presence
of one or more outliers can seriously affect the analysis of variance. Using
the normal plot of ¢ residuals to identify outliers in factorial or fractional
factorial is an easy method to find these dubious points. In some cases, the
t residuals form the identical pairs. One can not tell from the plot which
is doubtful. This phenomenon occurs for all minimal designs of resolution
IV, which fits the model containing all main effects and some two-factor
interactions, whether it is orthogonal or not. In these kinds of models, when
we drop one point or two points (not foldover pair) from the fraction, the
phenomenon of identical pairs of ¢ residuals may still occur. In this paper,
the theoretical background of the phenomenon and its sequences will be
investigated in detail.
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1. INTRODUCTION

When a linear model is fitted to the observational or experimental data set,
one can hardly be certain whether the model is appropriate or not before checking
some basic assumptions. Residuals act an important role in the linear model. One
usually uses residuals for detecting normal assumption, homogeneous variance,
influential observations, outliers, etc. For the linear model, the random errors
g; are generally assumed to be independent normal variables with mean 0 and
constant variance 0. Unfortunately, the residuals e; are not independent and do
not have common variance. In performing the data analysis, the residuals and
the scaled versions of the residuals have been used extensively to study validity
of the linear model and its assumptions.
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The heterogeneous variances of the residuals and the lack of independence
among three types of residuals, the residuals (e;), standardized residuals (r;),
and studentized residuals (¢;), complicate interpretation of their behavior. Three
types of residuals are denoted as follows:

€ €;
~ T ti: ~ g
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ST = hii

We will explain the notations of these three types of residuals later. In spite

€i, Ti =

of the problems associated with their usage, the three types of residuals have
been proven usefully for detecting model’s inadequacies and outliers. One has to
concern that the presence of one or more outliers in factorial or fractional factorial
designs can seriously affect the analysis of variance. This differs from the usual
multiple regression analysis which has more degrees of freedom for the residual
sum of squares, and one outlier may affect the residuals marginally only. Several
authors apply F and/or t-tests to identify the spurious points, such as Quenouille
(1953), Daniel (1960), Goldsmith and Boddy (1973), John and Prescott (1975),
and Weisberg (1985). In fact, these tests based on the statistics that were used
by these authors are equivalent to each other. Many other experimenters are
used to applying the normal plot of residuals to detect various departures from
the assumptions. It is also reasonable to use the normal plot of residuals to
identify unusual large residuals. Box et al. (1978), for example, suggested this
approach to find the unusual observations. Suppose that the normal plot of
residuals is approximately a straight line, then it indicates that there are no
outliers. Otherwise, possible outliers will be presented in the upper right, or the
lower left off the line. Liau (1999) addressed that the normal plot of externally
studentized residuals (or ¢ residuals) is more sensitive than the normal plot of
residuals for identifying the spurious points. If unfortunately the t residuals form
the identical equal pairs in some situations, then one can not distinguish which
point is an outlier from the model.

This article is organized as follows. After giving a brief description of the
minimal resolution IV designs, we develop a theorem and give an example to
explain the idea of the identical pair of residuals. In Section 3, we explore the
properties of omitting or missing an observation or two observations from the
model. Conclusion is given in Section 4.
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2. MINIMAL RESOLUTION IV DESIGN

A two-level fractional factorial design is of resolution IV if the main effects are
clear of two-factor interactions and some two-factor interactions are aliased with
each other. Any 2" P fractional factorial design with resolution IV has to contain
at least 2n points, and resolution IV design that contains exactly 2n points are
called minimal designs. All minimal designs are foldover designs. This property
has been showed by Webb (1968) and Margolin (1969). Another property which
is worthy to mention here is that the minimal resolution IV design can convert
any resolution IIT design for n factors into a resolution IV design for n+1 factors.

It is well known that the resolution IV design may be obtained from resolution
IIT design by the process of fold over. That is, we can fold over a 2"7P resolution
III design, simply adding the original fraction to a second fraction with all the
signs changed. And the plus signs in the identity column in the first fraction could
be switched in the second fraction, then a (n+1)% factor could be associated with
this column. For example, we can reverse all the signs of the 23~ design with
defining relation I = ABC, and then the new design is defined by I = —ABC
with 4 points. We then add the fourth factor, say D, to the eight-point combined
design with high level in the first fraction and low level in the second fraction. It
is easy to verify that the resulting design is a 247! minimal resolution IV design.
This fraction is also a foldover design. It consists of four pairs of points which
have foldover images of each other:

(1) and abed; ab and cd; ac and bd; ad and be.

There are some other useful nonorthogonal minimal resolution IV designs.
The 23 design with six points, 2° design with ten points, and 2% design with
twelve points, for example, are also interesting designs in practice. If the analysis
of variance procedure should include a set of main effects and some two-factor
interactions, using residuals (or ¢ residuals) for the model checking will meet some
difficulties. As we mentioned in the introduction, the residuals act an important
role for checking the assumptions of the model. In this situation, the ¢ residuals
occur in identical pairs, and one can not tell which of the two observations is to
blame from the ¢ residuals. We will give an example and the theoretical reasons
to show this phenomenon in detail. In practice, we can easily get around the
difficulty if we reduce the number of main effects.

We refer back to this difficulty that the model contains the main effects and
some two-factor interactions. The following theorem provides the phenomenon
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of identical pair of residuals (or ¢ residuals).

THEOREM 1. Suppose that the model includes all main effects and some two-
factor interactions in the minimal resolution IV design for n factors. If the design
matriz is nonsingular, then the t residuals of the foldover pair are identically
equal,

The proof of the theorem is given in Appendix.

EXAMPLE 1. We use an example of semiconductor experiment that is re-
ported by Kackar and Shoemaker (1986) to show the properties of ¢ residuals.
This is a minimal resolution IV design for cight factors in sixteen runs. It takes
a 2% with A, B, C, E and adds another four new factors by setting

D =ABC, F=ABE, G=ACE, H=BCE.

The observed response is the mean epitaxial thickness of wafers fabricated. If
the data set is fitted by all main effects and two-factor interactions, for example
AB and AD, then the t residuals of the foldover pair are identical. The original
data set and the t residuals are shown in Table 2.1 and Table 2.2, respectively.

TABLE 2.1 Data for 28 minimal design

(1) adfg bdfh abgh cdgh acth befg abed
14.821 13.972 14.165 14.878 14.037 14.843 14.757 13.907

abcdefg  bceeh aceg cdef abef bdeg adeh efgh
13.914 14921 14415 13.880 14.932 13.860 14.032 14.888

TABLE 2.2 t residuals for 28 minimal design

(1) adfg bdfh abgh  cdgh acth befg abed
—-1.045 1354 —1.511 -0277 2.647 —0.115 0200 -0.402

abcdefgh  bceh aceg cdef abef bdeg adeh efgh
—1.045 1.354 —1511 —-0.277 2.647 -0.115 0.200 -0.402

Hence the normal plot of the ¢ residuals will consist of eight double points and
each foldover pair is identically equal. That is, they have the property that the ¢
residuals of two observations, which form a foldover pair, are identical.

In general, the normal plot can show that one, or both, of the points in
a foldover pair is an outlier, but which one? Suppose that after the normal
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plot of ¢ residuals is performed, one of the points is clearly “off the line”. The
dubious point is the point and its complement. One, or both, of them may be
an outlier but we can not separate them, and tell which is the offender. This
kind of phenomenon occurs in minimal design no matter it is orthogonal or non-
orthogonal.

3. OMITTING AN OBSERVATION OR Tw0O OBSERVATIONS
FROM THE MODEL

When using the fractional factorial designs, sometimes an observation may
be missing. This may happen because of carelessness, error, or for any reasons
beyond the experimenter’s control. Or sometimes we have to drop a point from
the data set and then fit the model for the remaining points. When the fitted
model is used to predict the new value for this dropping point, there are some
particular properties happening in the minimal design. Suppose the minimal
design is applied by the experimenter, if the model contains all main effects as
well as some two-factor interactions, and an observation is omitted from the model
for some reasons, then there will be some interesting things that are worthy to
explore. We will show what happens when we omit an observation from the
model and also predict this value from the remaining 2n — 1 points.

COROLLARY 1. Suppose that we drop one point from the model that contains
all main effects and some two-factor interactions. The t residual of the other
point in the foldover pair equals to zero, and the t residuals of the remaining
foldover pair are still identically equal.

From the procedure of the proof of Theorem 1 in Appendix, it is just enough to
show that this phenomenon happens in residuals for the linear model. It means
that the phenomenon happens in residuals. It also happens in ¢ residuals. The
proof of Corollary 1 is given in Appendix.

Suppose that a foldover pair is omitted from the model, the design matrix
will become a singular matrix. It is just as John (1995) mentioned in his paper
that the form of the design matrix remains the same, but corresponding rows
have been dropped from V and —V (see Appendix). The rank of VIV is only
n—1, and then X7 X is singular. In this situation, the degree of resolution of the
design is no longer four.

COROLLARY 2. Suppose that two points (not foldover pair) are omitted from
the model that contains all main effects and some two-factor interactions. Then
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the t residuals of the other point in the corresponding foldover pair equal to zero,
and the residuals of the remaining foldover pair are still identically equal.

The proof of the above corollary is also given in Appendix.

4. CONCLUSION

Designed experiment with 2" factorials are being used widely in industry.
When we do the data analysis, any one or several of the features of the model,
such as normality of the error term, constant variance, or outliers, may not be
appropriate for the model assumptions. In this case, hence, residual analysis is
a highly useful mean of examining the aptness of a model. The normal plot of ¢
residuals is more sensitive for detecting outliers than the normal plot of residuals.
Unfortunately, when one is using minimal design in the experiment, if the model
contains all main effects and some two-factor interactions, the ¢ residuals of the
foldover pairs form the identical equal pairs. Thus when an outlier is presented,
one can not identify the point. Furthermore, when we drop one observation or two
observations (not foldover pair) from the model, the phenomenon still happens in
the t residuals for the foldover pair. In fact we can easily get around the difficulty
if we reduce the number of unimportant main effects from the model and leave
more degrees of freedom for the residuals. The further study is required to find
outliers on the problem when all main effects and some two-factor interactions
are all significant in the model.

APPENDIX

PRoOOF OF THEOREM 1. Denote the levels of factors by “+1” for the high
level and “—1” for the low level and fit a regression model with all main effects
and some two-factor interactions. The design matrix with a column ones on the

il

left can be written as

1-VU

where V is a n x n square matrix for all main effects, and U is a n X k nonsingular
matrix for some two-factor interactions. The matrix form of XTX is

on ol 21Tu
XTX = 0 2viv o
ouT1 of 2uTUu
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Hence
1/c of -1Tu(uTu)1/c
2XTX)™! = 0 v-L(vT)-1 0 :
—(UTu)-'uT1/c of B!

where ¢ = n — 1TU(UTU)~1U”T1 and

_ L S T T SRR N N SR e R S T
= L+ -(UTU) U 1{1 1 U(n>(U U)-'u 1} 1Tu(uTu)
— Lo+ %(UTU)_lUTllTU(UTU)‘l

= (UTu) 1 + %(UTU)_IUTllTU(UTU)”l.

Let Hy = U(UTU)“IUT. After the tedious algebraic operation, we can ob-
tain

AD
2eX(XTX)"1X = 2¢H =
X(X"X) ¢ [D A} :
where A = (I,—Hy)(Jn — L~ Hy)+2cL, and D= (I,—Hy) (I, — L, — I Hy).
From this we get

Ye(lyn — H) = (I, — Hy)(cI, + J,Hy — 3,,) (I, — Hy)(cl, + I, Hy — J,,)
2n (I, — Hy)(cIn + Jo.Hy — 1) (I, — Hy)(cI, + J,Hy = 3,) |

where J,, is a n X n square matrix of ones, I, is a n x n identity matrix. From
above matrix form, it is clear to know that the 5t and (n+1)* rows of 2¢(I2, — H)
are identical. That is, for the foldover pair e; = e,4;. Let hj; be the ith diagonal
element of H. It is also not hard to obtain that A; = Antiny,; from the matrix
2cH. We may recall the formula from the general book of regression analysis;
see, for example, Weisberg (1985).

The t residual is formed by
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where r; = e;/{5(1 - hii)l/Q}. For the foldover pair, e; = e,4; and hy; = hptinti,
it implies ¢; = t,4;. The theorem depends on the design that should be a minimal
design and that the model should at least include all main effects. The theorem
can be applied to both orthogonal and non-orthogonal designs.

Furthermore, if the model only contains all main effects, in this case, ¢ = n and
the form of the matrix is

nl, -J, nl, - J,
QME"_H)z{ﬂ —J, nl —J}'

This is the same as John’s (1995) result. O

Proor oF COROLLARY 1. The model in terms of observations may be writ-

ten in matrix form as
Y =X8B+e

Here, Y is a 2n x 1 vector of the observations, X is a 2n x p’ design matrix,
B is a p’ x 1 vector of parameters to be estimated, and ¢ is a 2n x 1 vector of
random errors. Let X%r be the " row of X, and h;; be the i** diagonal element
of the hat matrix H = X(X7X)"1X”. Write B(i) for a p’ x 1 vector of regression
coefficients estimated with the i** observation omitted, and e; for the i** residual
of the residual vector e. The formula from the book of regression analysis, for
example Weisberg (1985), can be obtained as

It means that if the 5** point is omitted and the model is refitted by the remaining
2n — 1 points, then the relationship between B and ,é(i) can be expressed by
the above formula. Furthermore, the new predicted value for the case i can be
estimated from the remaining 2n — 1 points and it equals to xiT,é(i). Let r be the
vector of residuals for the new fit. Then

=Y -XB8+XB-XB

(XTX:)—IXiBi

= X—
et 1 - hy;
Hence the j** residual for the new fit is formed by

hijei
BESY T T
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Without loss of generality, we let 1 < 4,5 < n. It is clear that hy; = hjpnqj
and h;; = hj; by the above matrix form for j # . Then we obtain

hije; enii+ hintjei ot
- n - n .
1 — hy 71— hy ?

Tj:€j+

This means that the residuals of the foldover pair, except the i** pair, again occur
in pairs. Hence, the ¢ residuals also have the same phenomenon. For the omitted
point .
1164 €i
T, =€ + 1—hii = 1—hii'

Let hy; = (k; + 2¢)/2c, then h; n4; = ki/2c, where k; is the ith diagonal element
of I, — Hy)(J, — cl, — J,Hy). In this case, the residual of the omitted point
in the foldover pair is

he e
Tnti = €nti + B en+i — € = 0.
1= hs
It indicates that the other point of the pair fits the new regression model perfectly
because its residual is zero. The residual (or ¢ residuals) of the remaining points

again occur in pairs. In this case it is still not easy to identify the exact outlier.
O

Proor orF COROLLARY 2. For convenience, we omit the first point from the
fraction. Denote the new hat matrix by H* and the matrix for the residuals by
I-H* for the new model with 2n—1 points. From Corollary 1, these two matrices

shall be the form
MOM

I-H*=|0T 007
MOM

where M is a (n — 1) x (n — 1) matrix, and

I-M 0 -M
H* = ol 1 o7
-M 01I-M

From the hat matrix H*, we obtain
h}, = h;m_u = h’:&t’u fort#£u, 1<t,u<n-—1andh}, = ht*,n+t-

Suppose that the j** point is dropped from the fraction. If the first point has
been omitted from the fraction; and the model is refitted by the remaining 2n —2
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points. As we discussed in the proof of Corollary 1, the residual, say §, for the
new fit is formed by

kT
Op =1r + I .
1 hj;

*
jn+k?
a foldover pair with point j. Otherwise, the residual for the other point in the

foldover pair with the point j is

Since ry = 7,4, and h;fk =h we have 0 = 0,41 for the point k that is not

h* 7.
Onyj = Tnij + *1'7"3%
JJ
= "n+j 1 rx
1= hj;

=Tntj =Ty

=0.

With the same idea, it is easy to obtain that the residual for the other point in
the foldover pair with the first point is still 0. O
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