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INVITED PAPER
UNORTHODOX BOOTSTRAPS!

PETER J. BICKEL!

ABSTRACT

We give an overview of results which have appeared or will appear else-
where demonstrating that by suitably modifying the bootstrap principle, its
applicability can be greatly enhanced. Although we state our results for the
1id case, extensions are, at least heuristically, easy.
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1. INTRODUCTION

Since its introduction in 1979, Efron’s nonparametric bootstrap has proved
its value in an ever increasing circle of applications. From the beginning, exten-
sions to regressions models were presented. These have been developed in many
directions and the original principle has further been extended to time series and
other dependent data problems. Nevertheless, there has also accumulated a body
of evidence reviewed and added to in Mammen (1992) and Bickel et al. (1997)
which clearly indicates weaknesses of the original, weaknesses which are due to
its “unregularized” nature.

In this paper, we shall review a general approach for regularizing the bootstrap
discovered by Politis and Romano (1994) and independently by G&tze (1993) and
developed by Bickel and Sakov (2002) and Gotze and Rauckauskas (2002) as well
as a quite different modification of Efron’s method, implicitly suggested by Beran
(1986) and developed by Bickel and Ren (2002). In Section 2, we give a series
of examples of nonparametric bootstrap failure and the m out of n bootstraps.
In Section 3, we discuss a proposal for choice of m and its application in setting
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confidence bounds for extrema. Finally, in Section 4, we review the Beran-Bickel-
Ren approach to setting critical values in testing. We do not give any proofs,
referring to the existing literature as appropriate.

2. FAILURE OF THE EFRON’S BOOTSTRAP AND SUBSAMPLING
WITHOUT AND WITH REPLACEMENT

Our setting throughout this paper will be that of observing X1, ..., X, which
are independent and identically distributed as X € X, X ~ P € P C M,
where M is the collection of all probability distributions on X with respect to an
appropriate ¢ field which we suppress. Let

Sox

denote the empirical distribution of the samples placing mass n~! at each X;.

Py
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Efron’s proposal can then be viewed abstractly as follows.

Suppose M O PU{All distributions with finite support}. We are given func-
tions T), : M x P — T such that T,(P,, P) = Tn(Xy,..., Xy, P) is a random
element (measurable with respect to the specified o field on X™ and a o field on
T). Suppose

Lp(T,(Pn,P))=>Lp

where Lp(-) denotes law and = is weak convergence in the sense of Hoffman-
Jorgensen with £p concentrating on a o compact metric subspace of 7. We refer
to van der Vaart and Wellner (1996) for the technical meaning of these state-
ments. As we illustrate in the examples that follow, we are really interested in
real valued parameters v(Lp(T,(Py, P))) = 6,(P) which converge to parame-
ters v(Lp) on P and are such that 6,(F,) can be defined on M. The Efron’s
prescription is then to use the “plug-in estimates” 6,(P,) to estimate 6,(P) or
equivalently 6(P) = v(Lp). Note that 8,(P,) is v applied to the distribution
of T,(P, P,) = Th(X7,...,X}, P,) where X{,..., X}, are drawn 4id from P,
(given X1,...,X,). Since drawing an #d sample from P, is equivalent to sam-
pling from the original sample with replacement, the bootstrap is often referred
to as “resampling”. Implementing the boosstrap typically involves Monte Carlo.
That is, v(Lp, (T(XT,..., X5, Py))) is approximated by drawing iid samples
(Xfpr -, X5), 1 < b < B from P, (given Xi,...,X,) and actually estimating
0,(P) by using v applied to the empirical distribution of T, (X7, ... X;p, Pn),
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1 < b < B. The bootstrap is said to work if 8,(Py) LG(P) in some uniform
fashion for P.

Ul ;.

U2

U3 :

U4 :

2.1. Usual examples — Functions

Nothing novel. If T,(Py, P) = u(P), for instance, X = R, u(P) = [« dP
and P = {P : [22dP(z) < oo}, then T,(P}, P,) = u(P,), the plug-in
estimate, and u(P,) = X in the above case. In words, the bootstrap in
such situations is just the usual NPMLE, the nonparametric maximum
likelihood estimate.

: Ty, (Pp, P) = rp(p(Py) — u(P)). If u(P) = [zdP and P as above, then

To(Pa, P) = n2(X — u(P)) .
If u(P) = F71(1/2), F(z) = P[X <z} and P = {F : F is a distribution
on R and has a finite positive derivative f at F~1(1/2)}, then

T,\(Pa, P) = nl/? {med(Xl, LX) - F‘l(%)} .

2.2. Usual examples — Parameters of Lp

0.(P) = riVarp{u(P,)}. The classical example is nVarp{med(Xj,...,
Xy)}. Note that in this case, although 6,(F,) is well defined for all P € M,

1

)= U= Gy

only on P.
0. (P) is a quantile. For example,
P {2 (u(Po) = u(P)) < 6n(Pc) } =1 -

So, 6,(P,c) is the (1 — a) quantile of Lp(T,(P,,P)). Then, u(P,) —
n~=1/28,(P,,a) is used as an asymptotic 1 — a lower confidence bound for
u(P).

Less obvious is the possible use of Efron’s percentile bound, the lower «

quantile of u(P}) itself as an asymptotic (1 —a) LCB. A discussion of successful
application of the technique in such examples as well as bias estimation and other
uses, is given in Efron and Tibshirani (1993), Hall (1992) and Bickel and Doksum
(2004), for instance.
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2.8. Counter examples

It is not surprising that 6, (P,) can mishehave badly since 8(P,), which as we
noted is just the nonparametric maximum likelihood estimate, is known to do so,
for instance, for the family of star shaped distributions (Barlow et al., 1972).

F1 : The simplest example is estimation of a density. Let X =R and P = {P:
P has density f at c}. Let

0,(P) = g- {Flc+n™Y) = Flc—n"h)} .

Then,
0.(P) — f(c) on P

but 6, (P,) ~ (1/2)Bin (n,8,(P)/n) where Bin denotes the binomial dis-
tribution. Finally, 6,(F,) = (1/2)P(2f(c)) where P denotes a Poisson
variable and = indicates weak convergence of the distribution with prob-
ability 1. The bootstrap evidently doesn’t work! If we replace ¢+ n~! by
c+n~? say, in 6,(P), then it is easy to see that 6,(P,) converges to a delta
function.

F2 : A more interesting example of the same type is presented in Bickel and
Freedman (1981) in the setting of a confidence bound on the upper end-
point of a distribution with support bounded above where we are using
max(Xy,...,X,) as an estimate. The general failure of the bootstrap for
confidence bounds for extrema is discussed in Athreya and Fukuchi (1994).

F3 : That the nonparametric bootstrap fails in the naive setting of critical values
for test statistics was in principle observed already by Freedman (1981)
and Beran (1986). For instance, consider testing H : p(P) = 0 vs. K :
u(P) > 0 with u(P) = EpX using /nX. Then, the (1 — o) quantile of
the (bootstrap) distribution of v/nX* does not converge to the appropriate
Gaussian quantile. The problem is that, since the bootstrap distribution of
J/n(X* — X) behaves appropriately, that of \/nX* = /r(X* — X) +/nX
cannot.

For more on problems of all of these, see Mammen (1992) and Bickel et al.
(1997).

The essential difficulty lies in the “irregularity” of the parameters 6(P) which
6,,(P) converges to. Politis and Romano (1994) and independently Gotze (1993)
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and Bickel et al. (1997) noted that regularization of this procedure was possible
quite generally.

The first of our nonorthodox types of bootstraps are the m out of n with
(WR) and without replacement (WOR) bootstraps. Informally, we view as our
goal estimating 8( P). We proceed by approximating 6(P) not by 8,(P) but rather
by Omn)(P) where m(n) — oo but m(n)/n — 0, and then consider estimating
this parameter by resampling from X7,..., X, with and without replacement.
Here are formal definitions and the statement of two theorems taken from Bickel
et al. (1997). We refer to that paper for proofs.

Let h be a bounded real valued function defined on the range of T, for in-
stance, t —1(t < tp). We view as our goal estimation of 6,(P)= Ep(h(Tn(Pr, P))).
More complicated parameters v such as quantiles are governed by the same heuris-
tics and results as those we detail below. Here are the procedures as detailed in
Bickel et al. (1997),

i) The n/n bootstrap (The nonparametric bootstrap). Let

Bn(P) = E*R(Tw(Fy, P))
=n" Y WXy, .o, X, P))-
(i1

Then, B, = Bn(P,) = 0,(P,) is the n/n bootstrap.
ii) The m/n bootstrap. Let

Bnn(P)=n"™ Y h(Tn(Xiy,- -, Xin, P)).

(i1,...,im)
Then, Bpn = Bmn(Pr) = 0m(Pr) is the m/n bootstrap.

iii) The () bootstrap. Let

Jm,n(P)=(”>_1 S (Tn(Xiys s X, P)).

m . )
i1 <o im
Then, Jin = Jmn(Pr) is the () bootstrap.
THEOREM 2.1. Suppose m/n — 0, m — oo. Then,

Jpn(P) = 0m(P) + O, {(m/n)1/2} . (2.1)
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If h is continuous and
Tn( X1, o, X, P) = Tin( X1, -, Xoms Pr) + 0p(1),

then

Let X;-i) = (Xj, .-, Xj)1x: and

1
hil,..,,ir(X17 e 7X’I‘) = ;'-

T 11 A£G <r

S AT, X8 py).

71 ? Jr

For vectors i = (4;,...,%,) in the index set, let

Ar’m:{(’ll,,zr)].S'LlSE;erm,ll++2r=—'m}

Then

BralP) =3 3 wan® (Z)_l S WX X))

r=11€Arm 1I<j1<<gr<m
where
“mnll) = @ (il, 5 z) /"
Let o
Omn(P) = EpBmn(P) =Y > wma()Ephi(X1,..., X,).
r=li€A;m

Finally, let
Sm(r/m) = max {|Ephi(X1,..., X;) — 0n(P)| 11 € Ar}
and define é,,(z) by extrapolation on [0,1]. Note that 4,,(1) = 0.
THEOREM 2.2. Under the conditions of Theorem 2.1
Binn(P) = O n(P) + Op(m/n)"/2.

If further
dm(1 —zm™1%) =0

uniformly for 0 <z < M for all M < co and m = o(n), then

O (P) = 0 (P) + o(1).

(2.4)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)
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Finally if
(in) (ir) _ (i1) (ir)
Tr(Xi™, .. X0 P) =Tn(X1 Y, ..., X', Py) + 0p(1) (2.11)
whenever i € Ay, m — oo and max{iy,...,i,} = O(m!/?), then

B = 0 (P) + 0p(1) (2.12)
if m — oo and m = o(n).

The m out of n WOR bootstrap works in absolute generality while the WR
bootstrap works in all examples of bootstrap failure we have addressed so far,
confidence bounds for extrema, setting critical values for tests, as well as others
such as estimating the kurtosis of the median — see Bickel and Sakov (2002) for
instance. An extensive discussion of extensions of the WOR bootstrap is in Politis
et al. (2002).

The advantage of the WOR bootstrap is its complete generality. Its disadvan-
tage is that it does not connect smoothly with the ordinary n out of n bootstrap.
It is intuitively clear and shown explicitly in various cases in Bickel et al. (1997)
that when the Efron’s bootstrap works, it is preferable in terms of higher order
effects (beyond consistency) to the m out of n bootstraps. The WR bootstrap
permits smooth extrapolation from m/n small to m/n ~ 1.

Both WR and WOR methods also face two further issues.

(i) To meaningfully apply them, the scale of T, (F,, P) must be known or es-
timable, as applying the m out of n bootstrap to n1/2{max(Xi,...,X,) —
F~1(1)} rather than n{max(Xi,...,X,) — F7}(1)} under the assump-
tions of Example F2, would give us nothing since n!/ 2max(Xy,...,Xn) —
F-1(1)} £50. Bertail et al. (1999) showed how this problem may be
tackled using the m out of n bootstrap distributions of T,,(P,, P) for m =
1,...,n.

(ii) Knowing that m — oo, m/n — 0 works tells us nothing about the mag-
nitude of m for a particular n. Ideally, we would like a data determined
choice My, such that the distribution £*(T, (X7,..., X% , Pn)) is as close
to the Lp(T,(Fy, P)) as possible within this family of possible estimates
{LX(To (X5, ..., X}, Py))}. A rule having oracle properties of this type is
discussed in the next section and in detail in Bickel and Sakov (2003).
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3. SELECTION RULE FOR m IN THE m OUT OF n BOOTSTRAP

We develop a rule for selecting m discussed fully in Gétze and Rauckauskas
(2002) and Bickel and Sakov (2003). For a given T,(F,, P), let L, be the true
distribution of T,,, L, = LpT,(P,, P) and Ly, , the corresponding bootstrap
distribution L}, , = L*T;,(Py,, P,). Here is a description and motivation of the
rule from Bickel and Sakov (2003).

Consider a sequence of m’s of the form

m; = [¢n], for j=0,1,2,...,0<g<1, (3.1)
where [a] denotes the smallest integer > a. Here is our rule:
1. For each my, find Ly, .. In practice this is done by Monte-Carlo.

2. Let My = argmin,,, || L7, () —L7,,, n(*) lo- 1f the difference is minimized
for a few values of m; then pick the largest among them. Denote the j
corresponding to m, by 7.

3. The estimator of L is L = L%

mn,n’

4. Estimate § by 0, = V(Z) or use the quantiles of L to construct confidence
interval for 8.

Here |lg|lc = sup, |g(z)|, the sup distance (Kolmogorov—Smirnov) for in-
stance, though it can be some other suitable measure of deviation. For instance,
in testing, a topic we do not pursue in this paper, comparison using p-values is
more appropriate (see Bickel and Sakov, 2002).

Here is the rationale behind this rule. In essentially all examples the failure of
the n bootstrap is of the following type: Ly, ,, viewed as a probability distribution
on the space of all probability distributions, does not converge to a point mass
at the correct limit L but rather converges to a nondegenerate distribution, call
it £1, on that space. If m — oo, m/n — A, 0 < XA < 1, one gets convergence to a
nondegenerate distribution, £y, which is typically different from £;. We expect
Lo = L. On the other hand, if m is fixed, L}, ,, typically converges to a degenerate
distribution concentrated at L,,(F) = Lp(Tm (X1, ..., Xm, F)). The motivation
of the rule should now be clear if m +— L,,(F) and A — L) are one-to-one. We re-
consider Example F3 where T;,(X1,...,X,) = vnX,, and where X1, ..., X, are
iid with zero mean and variance 02(F) < co. We use the subscript on X below to

indicate sample size. Then, /m (X, —X,) AN (0,0%(F)) with probability one as
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m — oco. But, this implies that /mX?, behaves like N(y/mX,,o*(F)). Writing
vmX, = /m/ny/nX,, we see that if m/n — A > 0, JmX, S N0, 0?(F)),
i.e., that £, is the random distribution given by N(VAZ,0*(F)) where Z ~
N(0,0%(F)). Note that £y is degenerate and equal to £; = N(0,0*(F)) if and
only if A = 0. Furthermore, A — L) is one-to-one. Moreover, by a theorem of
Kagan et al. (1973), in this set-up \/nTl)—(ml 4 \/FrEX'm,_, for my # mq if and only
if X7 is Gaussian. Thus, our rule should work if F' is not Gaussian. In fact, it
should and does work even if X is Gaussian since then any choice of m will work.
It is shown in Bickel and Sakov (2003) that the 71, selected by this rule indeed
has M, 2, 00, My /n —P—>0 in typical situations where the Efron’s bootstrap is
inconsistent. More importantly, if we let m,, be the “oracle choice”, the value of
m minimizing the distance, d(Ly, ,,, L) between L,  and L, the distribution
we are estimating, then d(L}, ,L.) and d(L L,) are of the same order.
Essentially, m,, is a correct choice to second order. These results, their application
to confidence bounds for high quantiles, for instance, F~! (1 —1/n) for F the
distribution function under P, and simulations are in Bickel and Sakov (2003).
Similar results for applications such as estimating test quantiles may be found
in Gotze and Rauckauskas (2002). Moreover, Bickel and Sakov (2003) also demon-

strate that if indeed m,/n 2, 1, that is the Efron’s bootstrap is actually best,

*
My,Nn?

M /10 2,1 as well. So this selection rule is potentially successful across the whole
possible scale of misbehaviour and optimal behaviour of the Efron’s bootstrap.

There is a class of situations in which the m out of n bootstrap works, but even
at its best is suboptimal. A possible fix is extrapolation, a technique discussed
in Bickel and Sakov (2002). We do not dwell on this here but instead in the
next section discuss a second unorthodox variant of the Efron’s bootstrap which
“automatically” corrects the inconsistency involved in the naive use of the n out
of n bootstrap.

4. THE “CONFIDENCE BAND” BOOTSTRAP

As we noted earlier, using the ordinary Efron’s bootstrap to set critical values
of X in testing H : EpX = 0 vs. K : EpX > 0 gives incorrect results. In this
case, the malfunction is expected. In general, when testing H : P € Py with
a test statistic T,,(P,), the more appropriate thing to do is to find an estimate
ﬁ() of P € Py which is consistent for Py € Py t.e. £}O(Tn(P;{)) — Lp, in Py
probability if Lp (T5,(P,)) — Lp,. Here, [,}”30 refers to sampling X7,..., X} did
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from ﬁo. For instance, in the example we have discussed, a natural choice of }30
is the empirical distribution of X; — X,..., X,, — X which belongs to Py since it
has expectation 0. This way of proceeding is the natural generalization of what
is done for parametric Py = {FPy : 6 € ©g C Rd}: find 50, the MLE under Py,
and simulate P(;O.

However, for semiparametric (and even parametric) Py finding an appropriate
P, and simulating from it may be difficult. Here is an example from Bickel and
Ren (1996, 2002).

EXAMPLE C1 (Double censoring). Let Xi,..., X, be iid with common dis-
tribution that of X where X = (Y,4) and Y and § are defined as follows. Let
Z have a distribution F' and be independent of (L,U) where L < U. Let (L,U)
have a joint distribution G. Then

Z,L<Z<U, 0,L<Z<U,
Y={1L Z<IL, L 5={-1,72<1I,
U Z>U 1, Z>U.

If we parametrize the members of the model as P(r, ), the hypothesis of interest
is H : F' = Fy. The parameter of interest defining H : F = Fy is T(P(FG ) =
J(F - Fb)2dFy. The test statistic is T, (Fn) =nf( F — Fp)?dFy where F is
the NPMLE of F, which can be thought of as 7(v/n(F, — Fp)). Algorithms for
finding F,, are given by Turnbull (1974).

The problem in finding Py= P( Fo.0) here is that the censoring mechanism is
quite unknown and L and U are never observed together so that we are unable
to estimate G by G and thus generate observations as we would do naturally by
using Py. Even if only right censoring is at issue, ﬁo, obtained by computing the
Kaplan-Meier estimate G of G and then obtaining observations from P( Fo.&) is
not necessarily simple if Fp is not a standard distribution, and rejective sampling
or a similar method need to be used.

The m out of n bootstrap is, as we noted, an alternative but, as is shown in
Bickel and Ren (2002), power loss over the alternative we describe below is an
unavoidable consequence. The alternative, introduced implicitly by Beran (1986)
and reproposed with many examples in Bickel and Ren (2002) is to consider a
confidence band problem. In this problem and quite generally as Bickel and Ren
(2002) show, the semiparametric hypothesis testing problem we consider is of
the form H : T(P) = 0 where T can be a function. Thus, in Example C1,
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let F(P) be the functional corresponding to the NPMLE of F', due to Turnbull
(1974) in this case. Then, T(P) = F(P) — Fy. Under regularity conditions
Vvn(F(P,)— F(P)) has a limiting Gaussian “distribution” whatever be P. Thus,
to set critical values for a statistic, T,,(P,) of the form 7(y/n(F(P,) — Fy)) such
that 7(0) = 0, as we have considered in Example C1, it is enough to obtain an
estimate of the distribution of v/n(F(P,) — F(P)) to sample from. The natural
procedure is to use the Efron’s bootstrap distribution not of 7(y/n(F(P,) — Fp))
but rather that of 7(\/n(F(P}) — F(P,))). This gives us the right answer not
only for P € Py where the limit of the bootstrap distributions is the same as
the limiting distribution of 7(v/n(F(P,) — Fy) but also when F(P) # Fy when
7(v/n(F(P,)— Fp)) tends to oco. So in general, our principle is that if we can frame
H as H: T,(P) = 0 and we consider a statistic 7(7,,(P,)), then we should obtain
a critical value by using the ordinary Efron’s (n out of n) bootstrap distribution,
LX1(To(Py)—T,(Py,))). This idea is developed in a number of examples in Bickel
and Ren (2002).

In conclusion, when it can be used, the confidence band bootstrap is a simpler
and theoretically better approach than that of the m out of n bootstrap. However,
the latter as is discussed in Bickel and Ren (2002) and Bickel and Sakov (2003) is
applicable much more broadly and when coupled with the selection rule given in
Section 3, will have oracular properties (within the class of m out of n bootstraps).
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