A note on partially conformal geodesic transformation on the Kahler manifolds*

Division of Mathematical Science and Informational Statistics

Wonkwang University Bong-Sik Cho

Abstract

In this paper, we deal with partially conformal geodesic transformations in Kahler geometry by using Fermi coordinates when the submanifold is a geodesic sphere. We derive the necessary and sufficient condition for the existence of such transformation in terms of the Jacobi operator and its derivative.

0. Historical background and introduction

In 1972, S. Tochibana introduced the notion of a geodesic conformal transformations around submanifolds in a Riemannian manifold. These transformations are extensions of geodesic symmetries and local reflections with respect to submanifolds. The notion of a reflections generalize that of reflections with respect to linear subspaces in Euclidean space. Recently, E. Garcia-Rio, L. Vanhecke and B. Y. Chen begun a systematic study of geodesic conformal transformation. They show that conformality is a strong condition and motivated the study of the notion of a partially conformal geodesic transformation.

We focus on partially conformal geodesic transformations in Kahler manifolds when the submanifold is a geodesic sphere. This note are devoted to characterizations of complex space forms by using non-Euclidean inversions as defining partially conformal geodesic transformations.

^{*} This paper was supported by Wonkwang University in 2003.

1. Kahler manifolds and Fermi coordinates

Let (M, g) be a connected smooth Riemannian manifold and ∇ its Levi Civita connection. Denote by R its associated Riemannian curvature tensor defined by

$$R_{XY} = \nabla_{[X,Y]} - [\nabla_{X}, \nabla_{Y}]$$

for all vector fields $X, Y \in \aleph(M)$. We put

$$R_{XYZW} = g(R_{XY}Z, W).$$

Let M be a n-dimensional Kahler manifold with structure (M, g, J):

$$J^{2} = -1,$$

$$g(JX, JY) = g(X, Y),$$

$$\nabla_{X}(J)Y = 0$$

for all vector fields X, $Y \in \aleph(M)$. Then

$$R(X, Y)J = JR(X, Y),$$

$$R(JX, JY) = R(X, Y).$$

A plane section of the tangent space T_pM at a point pINM is called a holomorphic section if it is spanned by vectors X and JX in T_pM . The sectional curvature of a holomorphic section is called a holomorphic sectional curvature. A Kahler manifold of constant holomorphic sectional curvature c is called a complex space form and its curvature tensor is given by

$$R_{XY}Z = \frac{c}{4} \{ g(X, Z) Y - g(Y, Z) X + g(JX, Z) J Y - g(JY, Z) J X + 2g(JX, Y) J Z \}.$$

A Kahler manifold M of dimension ≥ 4 is a complex space form if and only if, for every vector field X on M, $R_{XIX}X$ is collinear with JX.

Let B be a embedded submanifold of M with dim B=q and \exp_{ν} the exponential map of the normal bundle $\nu=T^{\perp}B$ of B and $m\in B$ and $\{E_1,\ldots,E_n\}$ a local orthonormal frame field of M defined along B in a neighborhood of m. We specialize the fields such that E_1,\ldots,E_q are tangent to B and E_{q+1},\ldots,E_n normal vector fields of B. For a system of coordinates (y^1,\ldots,y^q) of B in a neighborhood of m such that $(\partial/\partial y^i)(m)=E_i(m),\ i=1,\ldots,q$, the Fermi coordinates (x^1,\ldots,x^n) with respect to m, (y^1,\ldots,y^q) and (E_{q+1},\ldots,E_n) are defined by

$$x^{i}(\exp_{\nu}(\sum_{q=1}^{n} t^{a} E_{\alpha})) = y^{i}, \quad i=1, ..., q,$$

$$x^{a}(\exp_{\nu}(\sum_{q=1}^{n} t^{a} E_{\alpha})) = t^{a}, \quad a = q+1, ..., n$$

in an open neighborhood U_m of $m \in M$.

Put $s(r) = \rho(r)r$, where r is the normal distance. Then $r^2 = \sum_{\alpha=q+1}^{n} (x^{\alpha})^2$.

Let $u \in T_m^{\perp} \subset T_m M$ and $\gamma(r) = \exp_m(ru)$ the normal geodesic with $\gamma(0) = m$, $\gamma'(0) = u = E_n(m)$. Denote by $\{F_1, \dots, F_n\}$ the frame field along γ obtained by parallel translating $\{E_1(m), \dots, E_n(m)\}$ along γ . Consider the n-1 Jacobi vector fields Y_a , $\alpha = 1, \dots, n-1$ along γ , determined by the initial conditions

$$Y_i(0) = E_i(m),$$
 $Y_i'(0) = (\nabla_u \partial/\partial x^i)(m),$ $i = 1, ..., q,$
 $Y_a(0) = 0,$ $Y_a'(0) = E_a(m),$ $a = q + 1, ..., n.$

Then
$$Y_i(r) = \frac{\partial}{\partial x^i}(\gamma(r)), Y_a(r) = r \frac{\partial}{\partial x^a}(\gamma(r)).$$

Put $Y_{\alpha}(r) = D_{u}(r)F_{\alpha}$, $\alpha = 1$, ..., n-1. Then D_{u} satisfies the Jacobi equation $D_{u}'' + R \circ D_{u} = 0$

where $R(x)X = R_{\gamma'(r)X}\gamma'(r)$.

Using the initial conditions for Y_a ,

$$D_{u}(0) = \begin{pmatrix} I_{q} & 0 \\ 0 & 0 \end{pmatrix}, \quad D_{u}'(0) = \begin{pmatrix} T(u) & 0 \\ -^{t} \perp (u) & I_{n-q-1} \end{pmatrix}$$

where $T(u)_{ij} = g(T(u)E_i, E_j)(m) \perp (u)_{ia} = g(\perp_{E_i}E_a, E_n)(m)$

and $(\perp_X N)(m) = (\triangle_X^{\perp} N)(m)$. Then

$$g_{ij}(p) = ({}^{t}D_{u}D_{u})_{ij}(r), \quad g_{ia}(p) = \frac{1}{r}({}^{t}D_{u}D_{u})_{ia}(r),$$

$$g_{ab}(p) = \frac{1}{r^2} (^t D_u D_u)_{ab}(r), \quad g_{in} = g_{an} = 0, \quad g_{nn} = 1,$$

for $i, j=1, \dots, q$ and $a, b=q+1, \dots, n-1$

2. Main results

We consider the local diffeomorphi

$$\phi_B$$
: $p = \exp_{\nu}(ru) \mapsto \phi_B(p) = \exp_{\nu}(s(r)u)$

for $u \in T_m^{\perp}$, ||u|| = 1. ϕ_B is called the geodesic transformation with respect to B, which is locally given by

$$\phi_B: (x^1, \dots, x^n) \mapsto (x^1, \dots, x^q, \rho(r)x^{q+1}, \dots, \rho(r)x^n)$$

Then we have

$$\phi_{B*} \frac{\partial}{\partial x^{i}} = \frac{\partial}{\partial x^{i}}, \quad i = 1, \dots, q,$$

$$\phi_{B*} \frac{\partial}{\partial x^{a}} = \rho \frac{\partial}{\partial x^{a}} + \rho' \frac{\partial}{\partial r}, \quad a = q + 1, \dots, n.$$

Let η be the one form defined by $\eta(X) = g(X, JN)$.

If $\phi_B^* g = e^{2\sigma} g + f \eta \otimes \eta$ for some function f which is depends only on the normal distance function r, ϕ_B is said to be partially conformal.

Lemma 1. A geodesic transformation ϕ_B with respect to B is partially conformal if and only if

$$g_{ij}(\phi_B(p)) = (e^{2\sigma}g + f\eta \otimes \eta)_{ij}(p), \quad \rho g_{ia}(\phi_B(p)) = (e^{2\sigma}g + f\eta \otimes \eta)_{ia}(p),$$
$$\rho^2 g_{ab}(\phi_B(p)) = (e^{2\sigma}g + f\eta \otimes \eta)_{ab}(p), \quad e^{2\sigma} = (\rho' r + \rho)^2 = (s')^2$$

where $i, j=1, \dots, q$ and $a, b=q+1, \dots, n-1$.

proof. Using Fermi coordinates

$$(\phi_B^* g)_{ij}(p) = g_{ij}(\phi_B(p)), \qquad (\phi_B^* g)_{ia}(p) = \rho g_{ia}(\phi_B(p))$$
$$(\phi_B^* g)_{ab}(p) = \rho^2 g_{ab}(\phi_B(p)), \qquad (\phi_B^* g)_{nn}(p) = (\rho' r + \rho)^2 g_{nn}(\phi_B(p))(p)).$$

By the definition of partially conformal, we have the desired result.

Lemma 2. Let (M, g, J) be a Kahler manifold and B a real hypersurface. If ϕ_B is a partially conformal geodesic transformation with respect to B, then B is a Hopf hypersurface with two constant principal curvatures.

proof. By Lemma 1

$$g_{ii}(s(r)) = e^{2\sigma}g_{ii}(r) + f(r)(\eta \otimes \eta)_{ii}(r).$$
 (*)

Taking limits for r=0, $\delta_{ij}=s'(0)^2\delta_{ij}+f(0)\delta_{1i}\delta_{1j}$. Thus $s'(0)^2=1$ and f(0)=0.

Since ϕ_B is non-trivial, s'(0) = -1. Using power series expansion for both side of

(*), we get

$$\delta_{ii} - 2rT_{ii} + O(r^2) = \delta_{ii} + (2T_{ii} - 2s''(0)\delta_{ii} + f'(0)\delta_{1i}\delta_{1j})r + O(r^2).$$

Hence
$$T_{ij} = \frac{1}{2} (s''(0) \delta_{ij} - \frac{1}{2} f'(0) \delta_{1i} \delta_{1j}).$$

Therefore
$$k_1 = \frac{1}{2} s''(0) - \frac{1}{2} f'(0)$$
 and $k_2 = \dots = k_{n-1} = \frac{1}{2} s''(0)$.

Theorem 3. (M, g, J) is an n-dimensional Kahler manifold of complex space form $M_n(c)$, $c \neq 0$ if and only if the non-Euclidean inversion

$$\tan(s+\alpha)\frac{\sqrt{c}}{4}\tan(r+\alpha)\frac{\sqrt{c}}{4} = \tan^2\alpha\frac{\sqrt{c}}{4} \qquad (**)$$

defines a partially conformal geodesic transformation with respect to each geodesic sphere $G(\alpha)$ of small radius α .

proof. Let (**) be a partially conformal geodesic transformation with respect to $G(\alpha)$. Then $G(\alpha)$ is a hypersurface of M. Put

$$s + \alpha = \frac{4}{\sqrt{c}} \tan^{-1} \bar{t}$$
, $r + \alpha = \frac{4}{\sqrt{c}} \tan^{-1} t$ and $D = \tan^2 \alpha \frac{\sqrt{c}}{4}$.

Then (**) takes the form $\overline{t} t = D$ and $s = \frac{4}{\sqrt{c}} \tan^{-1}(D/t) - \alpha$.

By the power series expansion and lemma 2,

$$s = -r = \frac{1}{2} r^2 \sqrt{c} \cot \alpha \frac{\sqrt{c}}{2} + O(r^3),$$

$$f = -\left(\frac{\sin(s+a)\frac{\sqrt{c}}{2}}{\sin(r+a)\frac{\sqrt{c}}{2}}\right)^2 + \left(\frac{\sin(s+a)\sqrt{c}}{\sin(r+a)\sqrt{c}}\right)^2.$$

Hence $k_1 = \sqrt{c} \cot \alpha \sqrt{c}$ and $k_2 = \cdots = k_{n-1} = \frac{\sqrt{c}}{2} \cot \alpha \frac{\sqrt{c}}{2}$.

Thus (M, g, J) is a complex space $M_n(c)$.

Conversely, suppose $M = M_n(c)$ and c to be positive. Then

$$R = \begin{pmatrix} c & 0 \\ 0 & \frac{c}{4} I_{n-2} \end{pmatrix}, \qquad A = \begin{pmatrix} \frac{1}{\sqrt{c}} \sin \alpha \sqrt{c} & 0 \\ 0 & \frac{2}{\sqrt{c}} \sin \alpha \frac{\sqrt{c}}{2} I_{n-2} \end{pmatrix}.$$

Hence
$$T(\exp_{\nu}(ru)) = \begin{pmatrix} \sqrt{c}\cos{\alpha}\sqrt{c} & 0\\ 0 & \frac{\sqrt{c}}{2}\cos{\alpha}\frac{\sqrt{c}}{2}I_{n-2} \end{pmatrix}$$
.

Since
$$D_u(r) = (\cos \sqrt{c})D_u(0) + (\frac{\sin r\sqrt{c}}{\sqrt{c}})D_u(0)$$
,

$$g_{ij}(\exp \nu(ru)) = {t \choose u}D_u j_{ij}(r) = \left(\cos r \frac{\sqrt{c}}{2} + \cot \alpha \frac{\sqrt{c}}{2} \sin r \frac{\sqrt{c}}{2}\right)^2 \delta_{ij}.$$

From $e^{2\sigma}g_{ij}(p) = g_{ij}(\phi_p(p))$, we get

$$e^{2\sigma}\left(\cos r\frac{\sqrt{c}}{2} + \cot \alpha\frac{\sqrt{c}}{2}\sin r\frac{\sqrt{c}}{2}\right)^2\delta_{ij} = \left(\cos s(r)\frac{\sqrt{c}}{2} + \cot \alpha\frac{\sqrt{c}}{2}\sin s(r)\frac{\sqrt{c}}{2}\right)^2\delta_{ij}.$$

Thus $\frac{ds}{dr}\sin(r+a)\frac{\sqrt{c}}{2} = \pm \sin(s+a)\frac{\sqrt{c}}{2}$. Therefore

$$\frac{ds}{\sin(s+a)\frac{\sqrt{c}}{2}} = \pm \frac{dr}{\sin(r+a)\frac{\sqrt{c}}{2}} \tag{***}$$

So (**) is the only solution of (***) leaving G(a) invariant.

References

- 1. Djoric, M. and L. Vanhecke, "Almost Hermitian geometry, geodesic spheres and symmetries," *Math. J. Okayama Univ.* 32(1990), 187-206
- 2. Garcia-Rio, F. and L. Vanhecke, "Geodesic transformations in almost Hermitian geometry," *Tsukuba J. Math.* Vol. 23 No. 1(1999) 151-181
- 3. Tanno, S., "Constancy of holomorphic sectional curvature in almost Hermitian manifold," *Kodai Math. Sem. Rep.* 25(1973) 190-201
- 4. Vanhecke, L., "Geometry in normal and tubular neighborhoods," *Rend. Sem. Fac. Sci. Univ. Cagliari, supplemento al* Vol. 58(1988) 73-176
- 5. Vahecke, L. and T. J. Willmore, "Jacobi fields and geodesic spheres," *Proc. Roy. Soc. Edinburgh Sect. A* 82(1979) 233-240