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Abstract

In this paper, we deal with partially conformal geodesic transformations in Kahler
geometry by using Fermi coordinates when the submanifold is a geodesic sphere. We
derive the necessary and sufficient condition for the existence of such transformation

in terms of the Jacobi operator and its derivative.

0. Historical background and introduction

In 1972, S. Tochibana introduced the notion of a geodesic conformal transformations
around submanifolds in a Riemannian manifold. These transformations are extensions of
geodesic symmetries and local reflections with respect to submanifolds. The notion of a
reflections generalize that of reflections with respect to linear subspaces in Euclidean
space. Recently, E. Garcia-Rio, L. Vanhecke and B. Y. Chen begun a systematic study
of geodesic conformal transformation. They show that conformality is a strong condition
and motivated the study of the notion of a partially conformal geodesic transformation.

We focus on partially conformal geodesic transformations in Kahler manifolds when
the submanifold is a geodesic sphere. This note are devoted to characterizations of
complex space forms by using non-Euclidean inversions as defining partially conformal

geodesic transformations.

# This paper was supported by Wonkwang University in 2003.
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1. Kahler manifolds and Fermi coordinates

Let (M, g) be a connected smooth Riemannian manifold and V its Levi Civita
connection. Denote by R its associated Riemannian curvature tensor defined by
Rxy = Vixn — [Vx V4l
for all vector fields X, Y e R(M). We put
Rxvzw = 8( RxyZ, W).
Let M be a n-dimensional Kahler manifold with structure (M, g, J):

Ji=-1,
gJX, JY)=g(X, Y),
vx()Y=0

for all vector fields X, Y& RX(M). Then
RX, Y)J=JR(X, Y),
RUX,JY)=R(X,Y).
A plane section of the tangent space T,M at a point pINM is called a holomorphic

section if it is spanned by vectors X and JX in T,M. The sectional curvature of a
holomorphic section is called a holomorphic sectional curvature. A Kahler manifold of

constant holomorphic sectional curvature ¢ is called a complex space form and its

curvature tensor is given by
RyyZ="${e(X, 2)Y—&(Y, 2)X+g(JX, 2)JY- (Y, Z)]X+22(JX, Y)JZ}.
A Kahler manifold M of dimension =4 is a complex space form if and only if, for
every vector field X on M, RxxX is collinear with JX.
Let B be a embedded submanifold of M with dim B=g¢ and exp, the exponential
map of the normal bundle v=T'B of B and meB and {E,, ..., E,} a local

orthonormal frame field of M defined along B in a neighborhood of . We specialize

the fields such that E,, ..., E, are tangent to B and E,.,, ..., E, normal vector

fields of B. For a system of coordinates (¥', ..., %) of B in a neighborhood of m
such that (8/8y'Ym)=E;(m), i=1, ..., q, the Fermi coordinates (z}, ..., ) with

respect to m, (', ..., ¥?) and (Eg+i, ..., E,) are defined by
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xi(expv( ﬁtaEa))=yl’ ) i=1) MR | q,
g+1

x“(exp ,( ilt“E,,))= t', a=gq+1, .., n
q
in an open neighborhood U,, of me M.

Put s(#)=p(#)», where 7 is the normal distance. Then Y= 2+1(x”)2.

a=q
Let ueTy CT,M and 7(7)=exp,(7u) the normal geodesic with ¥{0)=m,
v'(0)=wu=E,(m). Denote by {Fy, -, F,} the frame field along 7y obtained by

parallel translating {E;(m), -+, E,(m)} along 7. Consider the z—1 Jacobi vector
fields Y,, a=1, -, n—1 along 7, determined by the initial conditions
Y (0O =E;(m), Y/(0)=(v,0/ox)m), i=1,..,q,
Y, (0)=0, Y, 0)=E,(m), a=q+1, ..., n.
Then Yi(H=-2(7("), YuD=r-2:(r(»).
dx dox
Put Y, (n)=D(nNF,, a=1, -, n—1. Then D, satisfies the Jacobi equation
D,+R-D,=0

where R(x)X=R ;»x7 (7).

Using the initial conditions for Y,,

p0=(f0), =T, 0 )

where T(w) ;= g(T(WE, E;)(m) 1(w,=g(LlgE, E,)(m)
and (L xN)(m)=(4 5% N)m). Then

249 =(D,D,) (7, gul®=L(D.D)u(»,

2D ="F (DDA, E=8am=0, gm=1,

for ¢,j=1,+,q and a, b=qg+1, -, n—1

2. Main results
We consider the local diffeomorphi
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¢5: p=exp ,(ru) — ¢5(p)= exp ,(s(nw)
for ueTs, llull=1. ¢g is called the geodesic transformation with respect to B,
which is locally given by

g+1

gp: (xh, =, 2") > (&', o, 1 p(NxHE, -, p(D)x™)

Then we have

0 __d -1 .
¢B*axl axl’ ? 19 vqy
Jd _ 0 A -
¢Btaxa paxa+par, a=gq+1, -, n

Let 7 be the one form defined by 7(X)=g(X, JN).
If ¢'}3g=e2"g+ /7Q®n for some function f which is depends only on the normal

distance function #, ¢z is said to be partially conformal.

Lemma 1. A geodesic transformation ¢z with respect to B is partially conformal if
and only if
gi(d(P)=("g+ @) (), 025 ()= (“g+ 1®n) (D),
2 be(M)=(g+ @) D), °=(0'r+0)?=(s)"
where 7, j=1,, q and @, b=q+1, -, n— 1.

proof. Using Fermi coordinates

(68 (D) =g;(85(D), (858 (D)= rgi(d5(D))

( ¢B g) ab(p) = ngab( ¢B (ﬁ)), ( ¢Bg) nn(p) = ( p’ r+ p)zgrm( ¢B (P))(D))
By the definition of partially conformal, we have the desired result.

Lemma 2. Let (M, g, J) be a Kahler manifold and B a real hypersurface. If ¢p is

a partially conformal geodesic transformation with respect to B, then B is a Hopf

hypersurface with two constant principal curvatures.

proof. By Lemma 1
gi(s(M=egi(N+ (N (@) 3(n). (%)
Taking limits for »=0, &;=s(0)%8;+7(0)81;6;. Thus s (0)®*=1 and £(0)=0.

Since ¢p is non-trivial, s (0)=—1. Using power series expansion for both side of
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(%), we get

85— 2rTy+ O(2) = 8;+ (2T ;=25 (0)8;+ £ (0)81,81,)r+ O(A).

Hence T,,——( (0)8;— zf(0)31131;)

Therefore k1=§s"(0 —Ef'(O) and k2='--=k,,_1=%s"(0).

Theorem 3. (M, g, J) is an n-dimensional Kahler manifold of complex space form

M, (c), ¢+#0 if and only if the non-Euclidean inversion

tan(s+ a/)——\/: tan(r+ a)\/—c —tanza\gc (%)

defines a partially conformal geodesic transformation with respect to each geodesic

sphere G(a) of small radius a.

proof. Let (#%) be a partially conformal geodesic transformation with respect to G(a).

Then G(e@) is a hypersurface of M. Put

4 4

s+a=TCtan—l_t, r+a=7—;tan_1tand D= tanzaf\/—c.

Then (*#) takes the form f t=D and s= 4 tan "1 (D/H—a
Ve

By the power series expansion and lemma 2,

s=—r=7y L 2V% cota \/_C+O(r3)
\/2 2
fem sin(s+a) 5" +( sin(s+a)\/?:>2
sm(7’+ a)_z_ Sin(7’+ a’)\/--CT ’
Hence ky=VccotaVe and ky=--=Fk,_ 1*%00‘5&\/2—6

Thus (M, g,]) is a complex space M,(c).

Conversely, suppose M= M,(c) and c to be positive. Then

r=[c 0 ] A= %Csina\/—c 0

0 ch,,_z

0 —\/2——6— sina% I, .,
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VecosaVe
0

Hence T(exp ,(ru)) = Ve 0\/—(} ]

5 Cosa 5" I,y

Since D,(7) = (cos We)D,(0) + (B2 ) p (),

2
gi(expv(ru)) = ('DuDu);j(r)=(cosr‘\/2;+ cotar—\/é_g sin rlz_-c-) 85

From ¢“g;(p)=g;($,(p)), we get

2 2
ez"(cosr%+ cota% sinr—gc-) 8; = (coss(r)%-*— cota% sins(r)lz_—c-) 8.

Thus % sin(r-+ a)% = +sin(s+ a)%. Therefore

ds -+ dr
sin(s+ a)% sin{r+ a,)l/_;Q

(*%x)

So (**) is the only solution of (***) leaving G(a) invariant.
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