Redox Regulation of Apoptosis before and after Cytochrome C Release

  • Chen, Quan (The National Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences) ;
  • Crosby, Meredith (Department of Environmental Health Sciences, Case Western Reserve University) ;
  • Almasan, Alex (Deparment of Cancer Biology, Lerner Research Institute and Department of Radiation, Oncology, The Cleveland Clinic Foundation)
  • 발행 : 2003.03.01

초록

Programmed cell death, or apoptosis, is one of the most studied areas of modern biology. Apoptosis is a genetically regulated process, which plays an essential role in the development and homeostasis of higher organisms. Mitochondria, known to play a central role in regulating cellular metabolism, was found to be critical for regulating apoptosis induced under both physiological and pathological conditions. Mitochondria are a major source of reactive oxygen species (ROS) but they can also serve as its target during the apoptosis process. Release of apoptogenic factors from mitochondria, the best known of which is cytochrome c, leads to assembly of a large apoptosis-inducing complex called the apoptosome. Cysteine pretenses (called caspases) are recruited to this complex and, following their activation by proteolytic cleavage, activate other caspases, which in turn target for specific cleavage a large number of cellular proteins. The redox regulation of apoptosis during and after cytochrome c release is an area of intense investigation. This review summarizes what is known about the biological role of ROS and its targets in apoptosis with an emphasis on its intricate connections to mitochondria and the basic components of cell death.

키워드

참고문헌

  1. Almeida A, Almeida J, Bolanos JP, and Moncada S (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98: 15294-15299 https://doi.org/10.1073/pnas.261560998
  2. Antonsson B, Montessuit S, Lauper S, Eskes R, and Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345 Pt 2: 271-278 https://doi.org/10.1042/0264-6021:3450271
  3. Armstrong JS and Jones DP (2002) Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. Faseb J 16: 1263-1265 https://doi.org/10.1096/fj.02-0097fje
  4. Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW, Peehl DM, and Knox SJ (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9: 252-263 https://doi.org/10.1038/sj.cdd.4400959
  5. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, et al. (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26: 435-439 https://doi.org/10.1038/82565
  6. Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2: 420-430 https://doi.org/10.1038/nrc821
  7. Baker A, Payne CM, Briehl MM, and Powis G (1997) Thioredoxin, a gene found overexpressed in human cancer, inhibits apoptosis in vitro and in vivo. Cancer Res 57: 5162-5167
  8. Baker A, Santos BD, and Powis G (2000) Redox control of caspase-3 activity by thioredoxin and other reduced oroteins. Biochem Biophys Res Commun 268: 78-81 https://doi.org/10.1006/bbrc.1999.1908
  9. Basanez G, Zhang J, Chau BN, Maksaev Gl, Frolov VA, Brandt TA, Burch J, Hardwick JM, and Zimmerberg J (2001) Pro- apoptotic cleavage products of Bcl-xL form cytochrome c- conducting pores in pure lipid membranes. J Biol Chem 276: 31083-31091 https://doi.org/10.1074/jbc.M103879200
  10. Bauer J, Wekerle H, and Lassmann H (1995) Apoptosis in brain-specific autoimmune disease. Curr Opin Immunol 7: 339-843 https://doi.org/10.1016/0952-7915(95)80057-3
  11. Beere HM and Green DR (2001) Stress management, heat shock protein 70 and the regulation of apoptosis. Trends Cell Biol 11: 6-10 https://doi.org/10.1016/S0962-8924(00)01874-2
  12. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto Rl, Cohen GM, and Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2: 469-475 https://doi.org/10.1038/35019501
  13. Beltran B, Mathur A, Duchen MR, Erusalimsky JD, and Moncada S (2000) The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc Natl Acad Sci USA 97: 14602-14607 https://doi.org/10.1073/pnas.97.26.14602
  14. Beltran B, Quintero M, Garcia-Zaragoza E, O'Connor E, Esplugues JV, and Moncada S (2002) Inhibition of mitochondrial respiration by endogenous nitric oxide: a critical step in Fas signaling. Proc Natl Acad Sci USA 99: 8892-8897 https://doi.org/10.1073/pnas.092259799
  15. Bossy-Wetzel E and Green DR (1999) Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 274: 17484-17490 https://doi.org/10.1074/jbc.274.25.17484
  16. Boveris A and Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134: 707-716 https://doi.org/10.1042/bj1340707
  17. Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504: 46-57 https://doi.org/10.1016/S0005-2728(00)00238-3
  18. Brown GC and Borutaite V (1999) Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp 66: 17-25
  19. Brown GC and Borutaite V (2001) Nitric oxide, mitochondria, and cell death. IUBMB Life 52: 189-195 https://doi.org/10.1080/15216540152845993
  20. Bruce-Keller AJ, Geddes JW, Knapp PE, McFall RW, Keller JN, Holtsberg FW, Parthasarathy S, Steiner SM, and Mattson MP (1999) Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD. J Neuroimmunol 93: 53-71 https://doi.org/10.1016/S0165-5728(98)00190-8
  21. Cadenas E and Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29: 222-230 https://doi.org/10.1016/S0891-5849(00)00317-8
  22. Cai J, Yang J, and Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366: 139-149 https://doi.org/10.1016/S0005-2728(98)00109-1
  23. Carmody RJ and Cotter TG (2001) Signalling apoptosis: a radical approach. Redox Rep 6: 77-90 https://doi.org/10.1179/135100001101536085
  24. Casteilla L, Rigoulet M, and Penicaud L (2001) Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life 52: 181-188 https://doi.org/10.1080/15216540152845984
  25. Chen Q, Chai Y-C, Mazumder S, Jiang C, Macklis RM, Chisolm GM, and Almasan A (2003) The late increase in free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Diff 10: 1-12 https://doi.org/10.1038/sj.cdd.4401148
  26. Chen Q, Gong B, and Almasan A (2000) Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ 7: 227-233 https://doi.org/10.1038/sj.cdd.4400629
  27. Chen Q, Gong B, Mahmoud-Ahmed A, Zhou A, Hsi ED, Hussein M, and Almasan A (2001) Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon- induced apoptosis in multiple myeloma. Blood 98: 2183-2192 https://doi.org/10.1182/blood.V98.7.2183
  28. Chen C, Takeyama N, Brady G, Watson AJM, and Dive C (1998) Blood cells with reduced mitochondrial membrane potential and cytosolic cytochrome c can survive and maintain clonogenicity given appropriate signals to suppress apoptosis. Blood 92: 4545-4553
  29. Cheng EHY, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, and Hardwick JM (1997) Conversion of Bcl-2 to a Bax-liks death effector by caspases. Science 278: 1966-1968 https://doi.org/10.1126/science.278.5345.1966
  30. Concannon CG, Orrenius S, and Samali A (2001) Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 9: 195-201 https://doi.org/10.3727/000000001783992605
  31. Cory S and Adams JM (2002) The Bcl2 family: regulators of the cellula life-or-death switch. Nat Rev Cancer 2: 647-656 https://doi.org/10.1038/nrc883
  32. Curtin JF, Donovan M, and Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265: 49-72 https://doi.org/10.1016/S0022-1759(02)00070-4
  33. Du C, Fang M, Li Y, Li L, and Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33-42 https://doi.org/10.1016/S0092-8674(00)00008-8
  34. Echtay KS, Murphy MP, Smith RA, Talbot DA, and Brand MD (2002a) Superoxide activates mitochondrial uncoupling protein 2 frorr the matrix side. Studies using targeted antioxidants. J Biol Chem 277: 47129-47135 https://doi.org/10.1074/jbc.M208262200
  35. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, et al. (2002b) Superoxide activates mitochondrial uncoupling proteins. Nature 415: 96-99 https://doi.org/10.1038/415096a
  36. Fadeel B, Hassan Z, Hellstrom-Lindberg E, Henter Jl, Orrenius S, and Zhivotovsky B (1999a) Cleavage of Bcl-2 is an early event in chemotherapy-induced apoptosis of human myeloid leukemia cells. Leukemia 13: 719-728 https://doi.org/10.1038/sj/leu/2401411
  37. Fadeel B, Orrenius S, and Zhivotovsky B (1999b) Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 266: 699-717 https://doi.org/10.1006/bbrc.1999.1888
  38. Fleury C, Pampin M, Tarze A, and Mignotte B (2002) Yeast as a model to study apoptosis? Biosci Rep 22: 59-79 https://doi.org/10.1023/A:1016013123094
  39. Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, and Orlandini SZ (2000) Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182: 41-49 https://doi.org/10.1002/(SICI)1097-4652(200001)182:1%3C41::AID-JCP5%3E3.0.CO;2-7
  40. Frohlich KU and Madeo F (2000) Apoptosis in yeast: a monocellular organism exhibits altruistic behaviour. FEBS Lett 473: 6-9 https://doi.org/10.1016/S0014-5793(00)01474-5
  41. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, and Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. Faseb J 13: 2061-2070 https://doi.org/10.1096/fasebj.13.14.2061
  42. Garrido C, Gurbuxani S, Ravagnan L, and Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death Biochem Biophys Res Commun 286: 433-442 https://doi.org/10.1006/bbrc.2001.5427
  43. Goldstein JC, Waterhouse NJ, Juin P, Evan Gl, and Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapic, complete and kinetically invariant. Nat Cell Biol 2:156-162 https://doi.org/10.1038/35004029
  44. Green D and Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8: 267- 271 https://doi.org/10.1016/S0962-8924(98)01273-2
  45. Green DR and Evan Gl (2002) A matter of life and death. Cancer Cell 1: 19-30 https://doi.org/10.1016/S1535-6108(02)00024-7
  46. Greenhalf W, Stephan C, and Chaudhuri B (1996) Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett 380: 169-175 https://doi.org/10.1016/0014-5793(96)00044-0
  47. Gross A, Pilcher K, Blachly-Dyson E, Basso E, Jockel J, Bassik MC, Korsmeyer SJ, and Forte M (2000) Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-X(L). Mol Cell Biol 20: 3125-3136 https://doi.org/10.1128/MCB.20.9.3125-3136.2000
  48. Hampton MB, Zhivotovsky B, Slater AF, Burgess DH, and Orrenius S (1998) Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem J 329: 95-99 https://doi.org/10.1042/bj3290095
  49. Hancock JT, Desikan R, and Neill SJ (2001) Does the redox status of cytochrome c act as a fail-safe mechanism in the regulation of programmed cell death? Free Radio Biol Med 31: 697-703 https://doi.org/10.1016/S0891-5849(01)00646-3
  50. Harris MH and Thompson CB (2000) The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7: 1182-1191 https://doi.org/10.1038/sj.cdd.4400781
  51. Hildeman DA, Mitchell T, Teague TK, Henson P, Day BJ, Kappler J, and Marrack PC (1999) Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10: 735-744 https://doi.org/10.1016/S1074-7613(00)80072-2
  52. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, and Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 94: 3633-3638 https://doi.org/10.1073/pnas.94.8.3633
  53. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, and Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241-251 https://doi.org/10.1016/0092-8674(93)80066-N
  54. Hsu YT and Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272: 13829-13834 https://doi.org/10.1074/jbc.272.21.13829
  55. Hu J, Ma X, Lindner DJ, Karra S, Hofmann ER, Reddy SP, and Kalvakolanu DV (2001) Modulation of p53 dependent gene expression and cell death through thioredoxin-thioredoxin reductase by the interferon-retinoid combination. Oncogene 20: 4235-4248 https://doi.org/10.1038/sj.onc.1204585
  56. Jaattela M, Wissing D, Kokholm K, Kallunki T, and Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17: 6124-6134 https://doi.org/10.1093/emboj/17.21.6124
  57. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, et al. (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549-554 https://doi.org/10.1038/35069004;Received1
  58. Kirkland RA and Franklin JL (2001) Evidence for redox regulation of cytochrome c release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. J Neurosci 21: 1949-1963
  59. Kirsch DG, Doseff A, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA, and Hardwick JM (1999) Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 274: 21155-21161 https://doi.org/10.1074/jbc.274.30.21155
  60. Kokoszka JE, Coskun P, Esposito LA, and Wallace DC (2001) Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 98: 2278-2283 https://doi.org/10.1073/pnas.051627098
  61. Korshunov SS, Krasnikov BF, Pereverzev MO, and Skulachev VP (1999) The antioxidant functions of cytochrome c. FEBS Lett 462: 192-198 https://doi.org/10.1016/S0014-5793(99)01525-2
  62. Kroemer G, Zamzami N, and Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18: 44-51 https://doi.org/10.1016/S0167-5699(97)80014-X
  63. Li CY, Lee JS, Ko YG, Kim Jl, and Seo JS (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275: 25665-25671 https://doi.org/10.1074/jbc.M906383199
  64. Li LY, Luo X, and Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95-99 https://doi.org/10.1038/35083620
  65. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, and Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479-489 https://doi.org/10.1016/S0092-8674(00)80434-1
  66. Liu H, Nishitoh H, Ichijo H, and Kyriakis JM (2000) Activation of apoptosis signalregulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20: 2198-2208 https://doi.org/10.1128/MCB.20.6.2198-2208.2000
  67. Liu X, Kim CN, Yang J, Jemmerson R, and Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147-157 https://doi.org/10.1016/S0092-8674(00)80085-9
  68. Lockshin RA and Zakeri Z (2002) Caspase-independent cell deaths. Curr Opin Cell Biol 14: 727-733 https://doi.org/10.1016/S0955-0674(02)00383-6
  69. Luetjens CM, Bui NT, Sengpiel B, Munstermann G, Poppe M, Krohn AJ, Bauerbach E, Krieglstein J, and Prehn JH (2000) Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci 20: 5715-5723
  70. Macho A, Hirsch T, Marzo I, Marchetti P, Dallaporta B, Susin SA, Zamzami N, and Kroemer G (1997) Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 158: 4612-4619
  71. Madeo F, Engelhardt S, Herker E, Lehmann N, Maldener C, Proksch A, Wissing S, and Frohlich KU (2002a) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet 41: 208-216 https://doi.org/10.1007/s00294-002-0310-2
  72. Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, and Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145: 757-767 https://doi.org/10.1083/jcb.145.4.757
  73. Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, and Frohlich KU (2002b) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9: 911-917 https://doi.org/10.1016/S1097-2765(02)00501-4
  74. Madesh M and Hajnoczky G (2001) VDAC-dependent per-meabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155: 1003-1015 https://doi.org/10.1083/jcb.200105057
  75. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, and Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284: 651-654 https://doi.org/10.1126/science.284.5414.651
  76. Martin SJ and Green DR (1994) Apoptosis as a goal of cancer therapy. Curr Opin Oncol 6: 616-621 https://doi.org/10.1097/00001622-199411000-00015
  77. Martincu I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, and Martinou JC (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144: 883-889 https://doi.org/10.1083/jcb.144.5.883
  78. Martinou JC, Desagher S, and Antonsson B (2000) Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2: E41-43 https://doi.org/10.1038/35004069
  79. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, and Kroemer G (1998a) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027-2031 https://doi.org/10.1126/science.281.5385.2027
  80. Marzo I, Susin SA, Petit PX, Ravagnan L, Brenner C, Larochette N, Zamzami N, and Kroemer G (1998b) Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 427: 198-202 https://doi.org/10.1016/S0014-5793(98)00424-4
  81. Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, and Nagata S (2000) Necrotic death pathway in Fas receptor signaling. J Cell Biol 151: 1247-1256 https://doi.org/10.1083/jcb.151.6.1247
  82. Matsuyama S, Nouraini S, and Reed JC (1999) Yeast as a tool for apoptosis research. Curr Opin Microbiol 2: 618-623 https://doi.org/10.1016/S1369-5274(99)00031-4
  83. Nardai G, Sass B, Eber J, Orosz G, and Csermely P (2000) Reactive cysteines of the 90-kDa heat shock protein, Hsp90. Arch Biochem Biophys 384: 59-67 https://doi.org/10.1006/abbi.2000.2075
  84. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati, C, Bracale R, Valerio A, Francolini M, Moncada S, and Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299: 896-899 https://doi.org/10.1126/science.1079368
  85. Orrenius S (1995) Apoptosis: molecular mechanisms and implications for human disease. J Internatl Med 237: 529-536 https://doi.org/10.1111/j.1365-2796.1995.tb00881.x
  86. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, and Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99: 1259-1263 https://doi.org/10.1073/pnas.241655498
  87. Parsell DA and Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437-496 https://doi.org/10.1146/annurev.ge.27.120193.002253
  88. Powis G, Kirkpatrick DL, Angulo M, and Baker A (1998) Thioredoxin redox control of cell growth and death and the effects of inhibitors. Chem Biol Interact 111-112: 23-34 https://doi.org/10.1146/annurev.ge.27.120193.002253
  89. Reed JC (1999) Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 11: 68-75 https://doi.org/10.1097/00001622-199901000-00014
  90. Ricci JE, Gottlieb RA, and Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160: 65-75 https://doi.org/10.1083/jcb.200208089
  91. Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mulsch A, and Dimmeler S (1999) Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 274: 6823-6826 https://doi.org/10.1074/jbc.274.11.6823
  92. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, and Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17: 2596-2606 https://doi.org/10.1093/emboj/17.9.2596
  93. Saleh A, Srinivasula SM, Balkir L, Robbins PD, and Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2: 476-483 https://doi.org/10.1038/35019510
  94. Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, and Tsujimoto Y (2001) Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152: 237-250 https://doi.org/10.1083/jcb.152.2.237
  95. Shimizu S, Narita M, and Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483-487 https://doi.org/10.1038/20959
  96. Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, and Vayssiere JL (1998) TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 17: 1639-1651 https://doi.org/10.1038/sj.onc.1202094
  97. Simpkins CO, Fogarty KW, 2nd, and Nhamburo P (1993) Reduction of cytochrome C by fragments of heat shock protein 70. Life Sci 52: 1487-1492 https://doi.org/10.1016/0024-3205(93)90110-O
  98. Skulachev VP (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423: 275-280 https://doi.org/10.1016/S0014-5793(98)00061-1
  99. Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, and Orrenius S (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82-83: 149-153 https://doi.org/10.1016/0378-4274(95)03474-9
  100. Slee EA, Keogh SA, and Martin SJ (2000) Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 7: 556-565 https://doi.org/10.1038/sj.cdd.4400689
  101. Sugawara T, Lewen A, Gasche Y, Yu F, and Chan PH (2002) Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release. Faseb J 16: 1997-1999
  102. Swerdlow RH, Parks JK, Miller SW, Turtle JB, Trimmer PA, Sheehan JP, Bennett, JP, Jr., Davis RE, and Parke- WD, Jr. (1996) Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol 40: 663-671 https://doi.org/10.1002/ana.410400417
  103. Tatton WG and Chalmers-Redman RM (1998) Mitochondria in neurodegenerative apoptosis: an opportunity for therapy? Ann Neurol 44: S134-141 https://doi.org/10.1002/ana.410440122
  104. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456-1462 https://doi.org/10.1126/science.7878464
  105. Tsujimoto Y and Shimizu S (2002) The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84: 187- 193 https://doi.org/10.1016/S0300-9084(02)01370-6
  106. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, and Yodoi J (2002) Redox control of cell death. Antioxid Redox Signa' 4: 405-414 https://doi.org/10.1089/15230860260196209
  107. Ueda S, Nakamura H, Masutani H, Sasada T, Yonehara S, Takabayashi A, Yamaoka Y, and Yodoi J (1998) Redox regulation of caspase-3(-like) protease activity: regulatory roles of thioredoxin and cytochrome c. J Immunol 161: 6689-6695
  108. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, and Wahl GM (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9: 1031-1044 https://doi.org/10.1016/S1097-2765(02)00520-8
  109. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, and Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627-637 https://doi.org/10.1016/S0092-8674(00)80450-X
  110. Vander Heiden MG and Thompson CB (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1: 209-216 https://doi.org/10.1038/70237
  111. Voehringer DW (1999) BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radic Biol Med 27: 945-950 https://doi.org/10.1016/S0891-5849(99)00174-4
  112. Voehringer DW, Hirschberg DL, Xiao J, Lu Q, Roederer M, Lock CB, Herzenberg LA, and Steinman L (2000) Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc Natl Acad Sci USA 97: 2680-2685 https://doi.org/10.1073/pnas.97.6.2680
  113. Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, and Meyn RE (1998) Bcl-2 expression causes redistribution of glutath one to the nucleus. Proc Natl Acad Sci USA 95: 2956- 2960 https://doi.org/10.1073/pnas.95.6.2956
  114. Voehringer DW and Meyn RE (2000) Redox aspects of Bcl-2 function. Antioxid Redox Signal 2: 537-550 https://doi.org/10.1089/15230860050192314
  115. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes & Dev 15: 2922-2933
  116. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, and Green DR (2001a) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153: 319-328 https://doi.org/10.1083/jcb.153.2.319
  117. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, and Green DR (2001 b) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153: 319-328 https://doi.org/10.1083/jcb.153.2.319
  118. Waterhouse NJ, Ricci JE, and Green DR (2002) And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie 84: 113-121 https://doi.org/10.1016/S0300-9084(02)01379-2
  119. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, and Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes & Dev 14: 2060-2071
  120. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, and Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727-730 https://doi.org/10.1126/science.1059108
  121. Weis M, Schlegel J, Kass GE, Holmstrom TH, Peters I, Eriksson J, Orrenius S, and Chow SC (1995) Cellular events in Fas/ APO-1-mediated apoptosis in JURKAT T lymphocytes. Exp Cell Res 219: 699-708 https://doi.org/10.1006/excr.1995.1281
  122. Widlak P, Li LY, Wang X, and Garrard WT (2001) Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J Biol Chem 276: 48404-48409 https://doi.org/10.1074/jbc.M108461200
  123. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, and Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139: 1281-1292 https://doi.org/10.1083/jcb.139.5.1281
  124. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, and Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408: 1008-1012 https://doi.org/10.1038/35050012
  125. Xia T, Jiang C, Li L, Wu C, Chen Q, and Liu SS (2002) A study on permeability transition pore opening and cytochrome c release from mitochondria, induced by caspase-3 in vitro. FEBS Lett 510: 62-66 https://doi.org/10.1016/S0014-5793(01)03228-8
  126. FEBS Lett v.510 A study on permeability transition pore opening and cytochrome c release from mitochondria, induced by caspase-3 in vitro Xia T;Jiang C;Li L;Wu C;Chen Q;Liu SS https://doi.org/10.1016/S0014-5793(01)03228-8