DOI QR코드

DOI QR Code

Linearization of the Nonlinear Control Systems

비선형 제어 시스템의 선형화

  • 이홍기 (중앙대학교 전자전기공학부)
  • Published : 2003.09.01

Abstract

Linearization is one of the most successful approaches nonlinear system control. The objective of this paper is to survey the recent results in linearization theory. It is hoped to be useful in understanding various linearization problems and challenging unsolved problems.

Keywords

References

  1. W. A. Porter, 'Diagonalization and inverses of nonlinear system,' Internatio- nal Journal of Control, vol. 11, pp. 67-76, 1970 https://doi.org/10.1080/00207177008905882
  2. E. Freund, 'Decoupling and pole assignment in nonlinear systems,' Electronics Letters, vol. 9, pp. 373-374, 1973 https://doi.org/10.1049/el:19730275
  3. A. J. Krener, 'On the equivalence of control systems and the linearization of nonlinear systems,' SIAM J. Control, vol. 11, pp. 670-679, 1973 https://doi.org/10.1137/0311051
  4. A. J. Krener, 'Linearization and bilinearization of control systems,' in Proc. 1974 Allerton Conf. Circuits and System Theory, 1974
  5. R. W. Brockett, 'Feedback invariants for nonlinear systems,' IFAC Congress, Helsinki, 1978
  6. R. W. Brockett, 'Nonlinear systems and differential geometry,' Proc. of the IEEE, vol. 64, pp. 61-72, 1976 https://doi.org/10.1109/PROC.1976.10067
  7. A. Isidori, A. J. Krener, C. Gori-Giogi, and S. Manaco, 'Nonlinear decoupling via feedback: A differential geometric approach,' IEEE Trans. Autom. Control, vol. 26, pp. 331-345, 1981 https://doi.org/10.1109/TAC.1981.1102604
  8. A. Isidori, A. J. Krener, C. Gori-Giorgi and S. Monaco, 'Locally (f,g) invariant distributions', Systems & Control Letters, vol. 1, pp. 12-15, 1981 https://doi.org/10.1016/S0167-6911(81)80005-9
  9. H. J. Sussmann, 'Lie brackets, real analyticity and geometric control,' Differential Geometric Control Theory, R. W. Brockett, et al. (ed), Boston: Birkhauser, pp. 1-116, 1983
  10. R. Su, 'On the linear equivalents of nonlinear systems,' Systems & Control Letters, vol. 2, pp. 48-52, 1982 https://doi.org/10.1016/S0167-6911(82)80042-X
  11. L. R. Hunt, R. Su, and G. Meyer, 'Design for multi-input nonlinear system,' in Differential Geometric Control Theory, R.W. Brockett, et al. (ed), Boston: Birkhauser, pp. 268-293, 1983
  12. B. Jakubzyk and W. Respondek, 'On the linearization of control systems,' Bull. Acad. Polon. Sci. Ser. Math. Astron. Physics, vol. 28, pp. 517-522, 1980
  13. A. Isidori, Nonlinear Control Systems, 3rd ed., Springer-Verlag London Ltd., 1995
  14. H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag New York Inc., 1990
  15. R. Marino and P. Tomei, Nonlinear Control Design, Prentice-Hall, 1995
  16. 이홍기, 비선형 제어 시스템의 선형화, 중앙대학교 출판부, 2001
  17. J. W. Grizzle, 'Feedback linearization of discrete-time systems,' in Lecture Notes in Control and Information Sciences, Springer-Verlag, vol. 83, pp. 273-281, 1986
  18. H.G. Lee and S.I. Marcus, 'Approximate and local linearizability of nonlinear discrete-time systems,' International Journal of Control, vol. 44, pp. 1103-1124, 1986 https://doi.org/10.1080/00207178608933653
  19. H. G. Lee, A. Arapostathis, and S. I. Marcus, 'On the linearization of discrete-time systems,' International Journal of Control, vol. 45, pp. 1803-1822, 1987 https://doi.org/10.1080/00207178708933847
  20. B. Jakubczyk, 'Feedback linearization of discrete-time systems,' Systems & Control Letters, vol. 9, pp. 411-416, 1987 https://doi.org/10.1016/0167-6911(87)90070-3
  21. J.W. Grizzle and P.V. Kokotovic, 'Feedback linearization of sampled-data systems,' IEEE Trans. Autom. Control, vol. 33, pp. 857-859, 1988 https://doi.org/10.1109/9.1316
  22. K. Nam, 'Linearization of discrete-time nonlinear systems and a canonical structure,' IEEE Trans. on AC, vol. 34, pp. 119-122, 1989 https://doi.org/10.1109/9.8665
  23. L. R. Hunt, M. Luksic, and R. Su, 'Exact linearization of input-output systems,' Int. J Control, vol. 43, pp. 247-255, 1986 https://doi.org/10.1080/00207178608933461
  24. I.-J. Ha and S.-J. Lee, 'Input-output linearization with state equivalence and decoupling,' IEEE Trans. on AC, vol. 39, pp. 2269-2274, 1994 https://doi.org/10.1109/9.333774
  25. E. Freund, 'Fast nonlinear control with arbitrary pole-placement for industrial robots and manipulators,' in Robot Motion, ed. by Brady, Hollerbach, Johnson, Lozano-Perez, and Mason, MIT Press, Cambridge, MA, 1982
  26. H. Ha, A. Tugcu, and N. Boustany, 'Feedback linearizing control of vehicle longitudinal acceleration,' IEEE Trans. Automat. Contr., vol. 34, pp. 689-698, 1989 https://doi.org/10.1109/9.29395
  27. R. Hunt, R. Su, and G. Meyer, 'Application of nonlinear transformations to automatic flight control,' Automatica, vol. 20, pp. 103-107, 1984 https://doi.org/10.1016/0005-1098(84)90069-4
  28. M. Ilic and F. Mak, ' A new class of fast nonlinear voltage controller sandtheir impact on improved transmission capacity,' in Proc. Amer. Contr. Conf., 1989
  29. J. Spong, R. Marino, S. Persada, and D. Taylor,'Feedback linearizing controls of switched reluctance motors,' IEEE Trans. Automat. Contr., vol. 32, pp. 371-374, 1987 https://doi.org/10.1109/TAC.1987.1104616
  30. T. Tam., A. Bejczy, A. Isidori, Y. Chen, ' Nonlinear feedback in robot arm control,' in Proc. 23rd IEEE Conf. Decision Contr., Las Vegas, NY, pp. 736-751, 1984 https://doi.org/10.1109/CDC.1984.272107
  31. T. J. Tam, A. K. Bejczy, and X. Yun, 'Coordinated control of two robot arms,' Proceedings of 25th IEEE Conference on Decision and Control, Athens, Greece, pp. 1193-1202, 1986 https://doi.org/10.1109/ROBOT.1986.1087606
  32. A. Arapostathis, B. Jakubczyk, H. G. Lee, S. I. Marcus, and E.D. Sontag, 'The effect of sampling on linear equivalence and feedback linearization,' System & Control Letters, vol. 13, pp. 373-381, 1989 https://doi.org/10.1016/0167-6911(89)90103-5
  33. J. P. Barbot, S. Monaco, and D. Normand-Cyrot, 'Discrete-time approximated linearization of SISO systems under output feedback,' IEEE Trans. On Automatic Control, vol. 44, pp. 1729-1733, 1999 https://doi.org/10.1109/9.788541
  34. W. M. Boothby, 'Some comments on global linearization of nonlinear system,' Systems & Control Letters, vol. 4, pp. 147-147, 1984 https://doi.org/10.1016/S0167-6911(84)80016-X
  35. R. B. Gardner, W. F. Shadwick, 'The GS algorithm for exact linearization to Brunovsky normal form,' IEEE Trans. on Automatic Control, vol. 37, pp. 224-230, 1992 https://doi.org/10.1109/9.121623
  36. A. J. van der Schaft, 'Linearization and input-output decoupling for general nonlinear systems,' Systems & Control Letters, vol. 5, pp. 27-33, 1984 https://doi.org/10.1016/0167-6911(84)90005-7
  37. A. J. Krener, 'Approximate linearization by state feedback and coordinate change,' System & Control Letters, vol. 5, pp. 181-185, 1984 https://doi.org/10.1016/S0167-6911(84)80100-0
  38. R. Marino, 'On the largest feedback linearizable subsystem,' System & Control Letters, vol. 6, pp. 345-351, 1986 https://doi.org/10.1016/0167-6911(86)90130-1
  39. Z. Sun and X. Xia, 'On nonregular feedback linearization,' Automatica, vol. 33, pp. 1339-1344, 1997 https://doi.org/10.1016/S0005-1098(97)00030-7
  40. S. S. Ge, Z. Sun, and T. H. Lee, 'Nonregular feedback linearization for a class of second-order nonlinear systems,' Automatica, vol. 37, pp. 1819-1824, 2001 https://doi.org/10.1016/S0005-1098(01)00129-7
  41. D. Cheng, X. Hu, and Y. Wang, 'Non-regular feedback linearization of nonlinear systems via a normal form algorithm,' preprint
  42. E. Aranda-Bricaire, C. H. Moog, and J. B. Pomet, 'A linear algebraic framework for dynamic feedback linearization,' IEEE Trans. on Automatic Control, vol. 40, pp. 127-132, 1995 https://doi.org/10.1109/9.362886
  43. B. Charlet, J. Levine, and R. Marino, 'On dynamic feedback linearization,' Systems & Control Letters, vol. 13, pp. 143-151, 1989 https://doi.org/10.1016/0167-6911(89)90031-5
  44. B. Charlet, J. Levine, and R. Marino, 'New sufficient conditions for dynamic feedback linearization,' Geometric Methods in nonlinear Control Theory, pp. 39-45, 1989
  45. B. Charlet, J. Levine, and R. Marino, 'Sufficient conditions for dynamic state feedback linearization,' SIAM J. Control Optim., vol. 29, pp. 38-57, 1991 https://doi.org/10.1137/0329002
  46. M. Fliess, J. Levine, P. Martin, and P. Rouchon, 'Flatness and defect of non-linear system: introductory theory and examples,' International Journal of Control, vol. 61, pp. 1327-1361, 1995 https://doi.org/10.1080/00207179508921959
  47. M. Fliess, J. Levine, P. Martin, and P. Rouchon, 'On differentially flat nonlinear systems,' Proc. 2nd IFAC NOLCOS, Bordeaux, pp. 408-412, 1992
  48. M. Guay, P. J. Mclellan, and D. W. Bacon, 'A condition for dynamic feedback linearization of control-affine nonlinear systems,' International Journal of Control, vol. 68, pp. 87-106, 1997 https://doi.org/10.1080/002071797223749
  49. B. Jacubczyk, 'Remarks on equivalence and linearization of nonlinear systems,' Proc. 2nd IFAC NOLCOS, Bordeaux, pp. 393-397, 1992
  50. H. G. Lee, Y. M. Kim, and H. T. Jeon, 'On the linearization via a restricted class of dynamic feedback, IEEE Transaction on Automatic Control, vol. 45, pp. 1385-1391, 2000 https://doi.org/10.1109/9.867065
  51. P. Rouchon, 'Necessary condition and genericity of dynamic feedback linearization ,' J. Math. Syst. Estim. Control, vol. 4, pp. 1-14, 1994
  52. W. M. Sluis, 'A necessary condition for dynamic feedback linearization ,' System & Control Letters, vol. 21, pp. 277-283, 1993 https://doi.org/10.1016/0167-6911(93)90069-I
  53. W. M. Sluis and D. M. Tilbury, 'A bound on the number of integrators needed to linearize a control system,' System & Control Letters, vol. 29, pp. 43-50, 1996 https://doi.org/10.1016/0167-6911(96)00046-1
  54. P-. G. Lee, A. Arapostathis, and S. I. Marcus, 'Linearization of discrete-time systems Via restricted dynamic feedback, IEEE Transaction on Automatic Control, 2003, to appear https://doi.org/10.1109/TAC.2003.817009
  55. H.G. Lee, A. Arapostathis, and S.I. Marcus, 'An algorithm for linearization of discrete-time systems via restricted dynamic feedback, 2003 IEEE Conference on Decision and Control, to appear https://doi.org/10.1109/CDC.2003.1272799
  56. E. Freund, 'The structure of decoupled non-linear systems,' International Journal of Control, vol. 21, pp. '143-450, 1975 https://doi.org/10.1080/00207177508922001
  57. J. W. Grizzle, 'Local input-output decoupling of discrete-time nonlinear systems,' Int. J. Control, vol. 43, pp. 1517-1530, 1986 https://doi.org/10.1080/00207178608933556
  58. J. W. Grizzle and A. Isidori, 'Block noninteracting control with stability via static state feedback,' Math. Contr., Sig. Syst., vol. 2, pp. 315-341, 1989 https://doi.org/10.1007/BF02551275
  59. I. J. Ha. 'Canonical forms of decouplable and controllable linear systems,' Int. J. Contr., vol. 56, pp. 691-701, 1992 https://doi.org/10.1080/00207179208934335
  60. I. J. Ha and E. G. Gilert, 'A complete characterization of decoupling control laws for a general class of nonlinear systems,' IEEE Trans. Autom. Control, vol. 31, pp, 823-830, 1986 https://doi.org/10.1109/TAC.1986.1104410
  61. H. J. C. Huijberts and H. Nijmeijer, 'Strong dynamic input-output decoupling : From linearity to nonlinearity,' In Proc. IFAC NOLCOS Conf., Bordeaux, France, 1992
  62. A.Isidori and J. W. Grizzle, 'Fixed modes and nonlinear noninteracing control with stability,' IEEE Trans. Autom. Control, vol. 33, pp. 907-914, 1988 https://doi.org/10.1109/9.7244
  63. S. Monaco and D. Normand-Cyrot, 'Some remarks on the invertibility of nonlinear discrete-time systems.', IEEE AC, pp. 324-327, 1983 https://doi.org/10.1109/ACC.1983.4171058
  64. H. Nijmeijer and W. Respondek, 'Decoupling via dynamic compensation for nonlinear control systems.', IEEE CDC, pp. 192-197, 1986 https://doi.org/10.1109/CDC.1986.267206
  65. H. Nijmeijer, 'Local (dynamic) input-output decoupling of discrete time nonlinear systems,' IMA Journal of Mathematical Control & Information, vol. 4, pp. 237-250, 1987 https://doi.org/10.1093/imamci/4.3.237
  66. W. Respondek, 'Dynamic input-output linearization and decoupling of nonlinear systems,' Proc. 2nd European control conference, Groningen, pp. 1523-1527, 1993
  67. W. Respondek and H. Nijmeijer, 'On local right-invertibility of nonlinear control systems.' Control Theory and Advanced Technology 4, pp. 325-348, 1988
  68. A. Isidori and A. Ruberti, 'On the synthesis of linear input-output reponses for nonlinear systems,' Systems & Control Letters, vol. 4, pp. 17-22, 1984 https://doi.org/10.1016/S0167-6911(84)80046-8
  69. H. G. Lee and S. I. Marcus, 'On input-output linearization of discrete time nonlinear systems,' Systems & Control Letters, vol. 8, pp. 249-259, 1987 https://doi.org/10.1016/0167-6911(87)90035-1
  70. D. Claude, M. Fliess, and A. Isidori, 'Immersion, directe et par bouclage, d'un systeme nonlineaire dans un linearire,' C. R. Acad. Sci. Paris, vol. 296, pp. 237-240, 1983
  71. H. G. Lee and S. I. Marcus, 'Immersion and immersion by nonsingular feedback of a discrete-time nonlinear system into a linear system,' IEEE Transaction on Automatic Control, vol. 33, pp. 479-483, 1988 https://doi.org/10.1109/9.1233
  72. A. J. Krener and W. Respondek, 'Nonlinear observers with linearizable error dynamics,' SIAM J. Control and Optimization, vol. 23, pp. 197-216, 1985 https://doi.org/10.1137/0323016
  73. K. Nam and A. Arapostathis, 'A model reference adaptive control scheme for pure-feedback nonlinear systems,' IEEE Transaction on Automatic Control, vol. 33, pp. 803-811, 1988 https://doi.org/10.1109/9.1308