SOME REMARKS ON M-IDEALS AND STRONG PROXIMINALITY

CATHERINE FINET AND LUCAS QUARTA

ABSTRACT. We prove that every M-ideal is strongly proximinal and that, for any Banach space X, $K(X, c_0)$ is an M-ideal in $L(X, \ell^{\infty})$.

1. Introduction

Many papers ([2], [10]-[14], [16], ...) are concerned with the phenomenon that for certain Banach spaces X and Y, the Banach space K(X,Y) of compact linear operators from X to Y is an M-ideal in L(X,Y), the Banach space of bounded linear operators from X to Y. This special attention is due to the facts that, for example, when this happens:

- every element of L(X,Y) has a best compact approximant (cf. Theorem A and Theorem B),
- one has the uniqueness of Hahn-Banach extensions from K(X,Y) to L(X,Y) ([14]).

This article extends some results of [2]. The authors proved that if X is a Banach space with an unconditional shrinking basis then $K(X, c_0)$ is proximinal in $L(X, \ell^{\infty})$. Here, we prove that every M-ideal is strongly proximinal. We also show that $K(X, c_0)$ is an M-ideal in $L(X, \ell^{\infty})$. This implies that, without any assumption on X, $K(X, c_0)$ is strongly proximinal in $L(X, \ell^{\infty})$.

Let us recall the notions mentioned above.

Received October 14, 2002.

 $^{2000 \} Mathematics \ Subject \ Classification: \ 41A50, \ 41A65, \ 46B20.$

Key words and phrases: proximinality, M-ideals, n-ball property, $1\frac{1}{2}$ -ball property, compact operators.

The authors want to thank the "Banque Nationale de Belgique" for the grant they got.

Let J be a closed subspace of a Banach space X. For $x \in X$, let

$$P_J(x) := \{ j \in J : ||x - j|| = d(x, J) \}$$

where $d(x,J) := \inf\{\|x-j\| : j \in J\}$. The subspace J is said to be proximinal in X, if for each x in X, the set $P_J(x)$ is non-empty. An element of $P_J(x)$ is called a best approximant of x in J. Every closed subspace of a finite dimensional space or of a uniformly convex space (and then of a reflexive space) is clearly proximinal. It is known that a Banach space X is reflexive if and only if every closed hyperplane is proximinal in X. If J is a proximinal subspace of finite codimension in X then $J^{\perp} := \{x^* \in X^* : x^*_{|J|} \equiv 0\}$ is contained in NA(X), the subset of X^* consisting of all norm attaining functionals on X ([5]). The converse fails in general (see [15]) but it is true for c_0 and its subspaces ([6]).

When each "nearly best approximant" of x in J is necessarily close to an actual best approximant one says that J is strongly proximinal in X. More precisely, for $\delta > 0$ let $P_J(x,\delta) := \{j \in J : ||x-j|| < 1\}$ $d(x, J) + \delta$, then J is strongly proximinal in X if and only if for each x in X and each $\epsilon > 0$ there is $\delta > 0$ such that $d(j, P_I(x)) < \epsilon$ for all $j \in P_I(x,\delta)$. Every strongly proximinal subspace is proximinal. It is easy to prove that every closed subspace of a finite dimensional space is strongly proximinal. But in general proximinality does not imply strong proximinality. For example, every proximinal hyperplane is strongly proximinal if and only if $NA_1(X) := NA(X) \cap S(X^*)$ coincides with the set $S := \{x^* \in S(X^*) : \| \cdot \|_{X^*} \text{ is } SSD \text{ at } x^* \}$ ([7]). A norm $\| \cdot \|_{X^*}$ on X is said to be strongly subdifferentiable (SSD) at x if the one-side limit $\lim_{t\to 0^+} \frac{1}{t} (\|x+th\|-\|x\|)$ exists uniformly in $h\in S(X)$. In [4], it is shown that $S \subseteq NA_1(X)$. Then, in a reflexive infinite dimensional space with a dual norm which is not everywhere SSD, there exists a hyperplane which is not strongly proximinal. In ℓ_1 , there exist non strongly proximinal hyperplanes since the canonical sup-norm on ℓ_{∞} is not everywhere SSD (see [3]). In [8], the authors proved that a finite codimensional subspace J of $K(\ell^2)$ is strongly proximinal if and only if J^{\perp} is contained in $NA(K(\ell^2))$.

A closed subspace J in X is said to be an M-ideal in X if and only if there exists a linear projection P from X^* to J^{\perp} such that :

$$\forall x^* \in X^* : ||x^*|| = ||Px^*|| + ||x^* - Px^*||.$$

This notion is due to Alfsen and Effros [1] and studied in detail in [9]. Examples of M-ideals are [9]: c_0 in its bidual ℓ^{∞} , K(H) in L(H) where H is an Hilbert space, $K(X, c_0)$ in $L(X, c_0)$ for every Banach

space X, or $K(\ell^p, \ell^q)$ in $L(\ell^p, \ell^q)$ for $1 < p, q < +\infty$, while it is not true for K(X) in L(X) if $X = \ell^{\infty}$ or $X = L^{p}(0, 1), p \in [1, +\infty] \setminus \{2\}.$

In [12], it is shown that $K(L^p, \ell^p)$ is an M-ideal in $L(L^p, \ell^p)$ if $1 < \ell^p$ $p \le 2$ and it is not true if p > 2. In [10], it is proved for $2 \le p < +\infty$ and subspaces X of quotients of L^p with a 1-unconditional finite dimensional Schauder decomposition that $K(X, \ell^p)$ is an M-ideal in $L(X, \ell^p)$.

In [1], the authors also gave the following equivalent condition for Jto be an M-ideal in X which avoids mentioning the dual space X^* .

THEOREM A. For a closed subspace J of a Banach space X, the following assertions are equivalent:

- 1. J is an M-ideal,
- 2. The n-ball property.

For all $n \in \mathbb{N}$ and all families $(B(x_i, r_i))_{i=1}^n$ of n closed balls satisfying $B(x_i, r_i) \cap J \neq \emptyset$ for all i = 1, ..., n and $\bigcap_{i=1}^n B(x_i, r_i) \neq \emptyset$ the conclusion $\bigcap_{i=1}^n B(x_i, r_i + \epsilon) \cap J \neq \emptyset$ for all $\epsilon > 0$ holds.

3. The [restricted] 3-ball property. For all $j_1, j_2, j_3 \in B(J)$, all $x \in B(X)$ and all $\epsilon > 0$ there is $j \in J$ satisfying: $||x + j_i - j|| \le 1 + \epsilon$ for i = 1, 2, 3.

Following [16], we say that a closed subspace J of a Banach space Xhas the $1\frac{1}{2}$ -ball property in X if the conditions

$$x \in X, j \in J, \quad ||x - j|| \le r_1 + r_2 \quad \text{and} \quad B(x, r_2) \cap J \ne \emptyset$$

implies that

$$B(j, r_1) \cap B(x, r_2) \cap J \neq \emptyset$$
.

This is equivalent to requiring the (strict) 2-ball property subject to the restriction that one of the centers lies in J:

if
$$x \in X, j \in J$$
, $B(j, r_1) \cap B(x, r_2) \neq \emptyset$ and $B(x, r_2) \cap J \neq \emptyset$
then $B(j, r_1) \cap B(x, r_2) \cap J \neq \emptyset$.

Let us note that the $1\frac{1}{2}$ -ball property is not a sufficient condition to be an M-ideal: $K(\ell^1)$ has the $1\frac{1}{2}$ -ball property in $L(\ell^1)$ but it is not an M-ideal (see [9], [16]).

THEOREM B. [16] Let J be a closed subspace of a Banach space X. If J has the $1\frac{1}{2}$ -ball property in X then J is proximinal in X.

According to Theorem A and Theorem B, we get

COROLLARY. Every M-ideal is proximinal.

2. Results

As mentioned before, the $1\frac{1}{2}$ -ball property is a sufficient condition for proximinality. Here we prove that this property implies strong proximinality.

THEOREM 1. Let J be a closed subspace of a Banach space X. If J has the $1\frac{1}{2}$ -ball property in X then J is strongly proximinal in X.

Proof. The proof follows the ideas of the proof of Theorem B in [16]. Let $x \in X$ be such that d := d(x, J) > 0 and $\epsilon > 0$ be fixed. We want to prove that there exists $\delta > 0$ such that :

$$|\forall j \in J : ||x - j|| < d + \delta| \Rightarrow |\exists j' \in J : ||j - j'|| < \epsilon \text{ and } ||x - j'|| = d|$$
.

Let us take $\delta = \epsilon$ and let $j_1 \in J$ be such that $||x-j_1|| < d+\delta = (d+\frac{\delta}{2})+\frac{\delta}{2}$. By definition of d, $B(x, d+\frac{\delta}{2}) \cap J \neq \emptyset$ and then by the $1\frac{1}{2}$ -ball property, we have

$$\exists j_2 \in J : j_2 \in B\left(j_1, \frac{\delta}{2}\right) \cap B\left(x, d + \frac{\delta}{2}\right).$$

We have now $||x-j_2|| \le (d+\frac{\delta}{2}) = (d+\frac{\delta}{4}) + \frac{\delta}{4}$ and by the $1\frac{1}{2}$ -ball property, we have :

$$\exists j_3 \in J : j_3 \in B\left(j_2, \frac{\delta}{4}\right) \cap B\left(x, d + \frac{\delta}{4}\right).$$

So, inductively, we construct a sequence $(j_n)_{n\geq 1}\subset J$ such that : $\forall n\geq 1$,

$$||x - j_n|| \le d + \frac{\delta}{2^{n-1}}$$

(2)
$$||j_n - j_{n+1}|| \le \frac{\delta}{2^n}.$$

By (2), $(j_n)_{n\geq 1}$ is a Cauchy sequence in J. Since J is closed, there exists $j'\in J$ such that $j'=\lim_{n\to+\infty}j_n$. By (1), we have ||x-j'||=d. By (2) again,

$$\forall n \ge 1 : ||j_1 - j_n|| \le ||j_1 - j_2|| + ||j_2 - j_3|| + \dots + ||j_{n-1} - j_n||$$

$$\le \delta \sum_{n=1}^{+\infty} \frac{1}{2^n} = \delta.$$

Then,
$$||j_1 - j'|| \le \delta = \epsilon$$
.

By Theorem A and Theorem 1, we have the following

COROLLARY 2. Every M-ideal is strongly proximinal.

Following ideas described in [9], we prove

PROPOSITION 3. For every Banach space X, $K(X, c_0)$ is an M-ideal in $L(X, \ell^{\infty})$.

Proof. By Theorem A, it suffices to prove that $K(X, c_0)$ satisfies the 3-ball property in $L(X, \ell^{\infty})$. Let $S \in B(L(X, \ell^{\infty}))$, $T_i \in B(K(X, c_0))$ (i = 1, 2, 3) and $\epsilon > 0$. We want to find $T \in K(X, c_0)$ such that:

$$||S + T_i - T|| \le 1 + \epsilon$$
 for $i = 1, 2, 3$.

For $a = (a_j)_{j \ge 1} \in \ell^{\infty}$, let us put : $P_n(a) = (a_1, a_2, \dots, a_n, 0 \dots)$. Since $T_i \in K(X, c_0)$ (i = 1, 2, 3), we have :

$$||P_nT_i - T_i|| < \epsilon$$
 for $i = 1, 2, 3$ and n big enough.

Moreover,

$$||P_nT_i + (Id_{\ell^{\infty}} - P_n)S|| \le 1 \quad (i = 1, 2, 3),$$

since $||P_nT_i + (Id_{\ell^{\infty}} - P_n)S|| \le \max\{||P_nT_i||, ||(Id_{\ell^{\infty}} - P_n)S||\}.$

If we take $T = P_n S$ (for n big enough), then for i = 1, 2, 3:

$$||T_i + S - P_n S|| \le ||T_i - P_n T_i|| + ||P_n T_i + (Id_{\ell^{\infty}} - P_n)S||$$

 $\le \epsilon + 1.$

By Corollary 2, we then have

COROLLARY 4. For every Banach space X, $K(X, c_0)$ is strongly proximinal in $L(X, \ell^{\infty})$.

REMARK 5. It is clear from the proof of Proposition 3 that if (K_{α}) is a net of compact operators on Y satisfying:

$$K_{\alpha} \longrightarrow Id_{Y}$$
 in norm and $\limsup_{\alpha} \|K_{\alpha}U + (Id_{Y} - K_{\alpha})W\| \le \max\{\|U\|, \|W\|\}$ for all U, W in $L(X, Y)$

then K(X,Y) is an M-ideal in L(X,Y).

References

- [1] E. M. Alfsen, E. G. Effros, Structure in real Banach spaces, I, II, Ann. of Math 96 (1972), 98–173.
- [2] C. M. Cho, W. S. Roh, Proximinality of certain spaces of compact operators Bull. Korean Math. Soc. 38 (2001), No. 1, 65-69.

- [3] C. Franchetti, Lipschitz maps and the geometry of the unit ball in normed spaces, Arch. Math. 46 (1986), No. 1, 76-84.
- [4] C. Franchetti and R. Payá, Banach spaces with strongly subdifferentiable norm, Boll. Un. Mat. Ital. B (1993), No. 1, 45-70.
- [5] A. L. Garkavi, On best approximation by the elements of infinite dimensional subspaces of a certain class, Math. Sb. 62 (104) (1963), 104–120.
- [6] G. Godefroy and V. Indumathi, *Proximinality in subspaces of* c₀, J. Approx. Theory **101** (1999), No. 2, 175–181.
- [7] ______, Strong Proximinality and Polyhedral spaces, Rev. Mat. Complut. 14 (2001), No. 1, 105–125.
- [8] G. Godefroy, V. Indumathi and F. Lust-Piquard, Strong subdifferentiability of convex functionals and proximinality, J. Approx. Theory 116 (2002), No. 2, 397–415.
- [9] P. Harmand, D. Werner and W. Werner, *M-ideals in Banach spaces and Banach algebras*, Lecture Notes in Mathematics **1547**, Springer-Verlag, 1993.
- [10] K. John, D. Werner, *M*-ideals of compact operators into ℓ^p , Czechoslovak Math. J. **50** (125) (2000), No. 1, 51–57.
- [11] N. J. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), No. 1, 147–169.
- [12] N. J. Kalton, D. Werner, Property (M), M-ideals and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–178.
- [13] A. Lima, E. Oja, T. S. S. R. K. Rao and D. Werner, Geometry of operator spaces, Michigan Math. J. 41 (1994), No. 3, 473-490.
- [14] R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238–255.
- [15] _____, Chebychev subspaces of finite codimension in C(X), Pacific J. Math. 13 (1963), 647-655.
- [16] D. T. Yost, Best Approximation and Intersections of balls in Banach spaces, Bull. Austral. Math. Soc. 20 (1979), No. 2, 285–300.

Université de Mons-Hainaut, Institut de Mathématique, Le Pentagone, Avenue du Champ de Mars, 6, 7000 Mons, Belgium

E-mail: catherine.finet@umh.ac.be lucas.quarta@umh.ac.be