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EFFICIENT ALGORITHMS FOR COMPUTING
THE MINIMAL POLYNOMIALS AND THE
INVERSES OF LEVEL-k I[I-CIRCULANT MATRICES

ZHAOLIN JIANG AND SANYANG Liu

ABSTRACT. In this paper, a new kind of matrices, i.e., level-k II-
circulant matrices is considered. Algorithms for computing minimal
polynomial of this kind of matrices are presented by means of the
algorithm for the Grébner basis of the ideal in the polynomial ring.
Two algorithms for finding the inverses of such matrices are also
presented based on the Buchberger’s algorithm.

0. Introduction

Circulant matrices, as an important class of special matrices, have a
wide range of interesting applications in numerical computation, signal
processing, coding theory and oil investigation, and so on. In this paper,
a new kind of circulant matrices, level-k II-circulant matrices over a field,
is introduced.

The minimal polynomial of a matrix has a wide range of applications
in the decomposition of a vector space and the diagonalization of a
matrix. But it is not easy to find a minimal polynomial of a given matrix.
In this paper, an algorithm for computing the minimal polynomials of
such matrices is given by means of the algorithm for Grdobner basis of
an ideal, which can be realized by CoCoA 4.0, a system of Algebra, in
the field of rational numbers or in the ring of residue classes of modulo
a given prime number.

We show that the ring of all level-k Il-circulant matrices over a field
is isomorphic to a factor ring of a polynomial ring in &k variables over the
same field and then present an algorithm for the minimal polynomial of
a level-k H-circulant matrix by mean of the algorithm for the Grobner
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basis for a kernel of a ring homomorphism. We also give a sufficient and
necessary condition to determine whether a level-k II-circulant matrix
over a field is singular or not and then present two algorithm for the
inverse of a level-k II-circulant matrix over a field.

We give now some terminologies and notation here. Let F be a field
and Fzy,...,zx] the polynomial ring in k variables over the field F. By
Hilbert Basis Theorem, we know that every ideal I in Flz1,...,z] is
finitely generated. Fixing a term order in F[zi,...,zx], a set of non-
zero polynomials G = {gj,...,¢:} in an ideal I is called a Grobner basis
for L if and only if for all non-zero f € I, there exists ¢ € {1,...,t} such
that Ip(g;) divides Ip(f), where Ip(g;) and Ip(f) are the leading power
products of g; and f, respectively. A Grobner basis G = {g1,..., 6} is
called a reduced Grobner basis if and only if, for all 4, lc(g;) =1 and g;
is reduced with respect to G — {g¢;}, that is, for all ¢, no non-zero term
in g; is divisible by any Ip(g;) for any j # ¢, where lc(g;) is the leading
coeflicient of g;.

In this paper, we set A% = T for any square matrix A4, and (f1,..., fm)
denotes an ideal of F[z1,...,zx] generated by polynomials fi,..., fm.

1. Definition and lemma

DEFINITION 1. An n x n matrix P over F is called a permutation
matriz if exactly one entry in each row and column is equal to 1, and all
other entries are 0.

DEFINITION 2. An n X n permutation matrix P over F is called a
basic circulant permutation matriz if and only if

(1) P =1,,

where I, is an n x n identity matrix, n is the smallest positive integer
which satisfies the above equation (1).

Obviously, the minimal polynomial of an n x n basic circulant per-
mutation matrix P is z" — 1. In the following

Let P, be an n; X n; basic circulant permutation matrix and IT =
(P1, P2, ..., P).

Let I, be the n; x n; identity matrix for ¢ = 1,2,...,k and N =
ning...Ng. Set

Ui:In1®“'®Ini_1®B®Ini+1®"'®Ink

fori=1,2,...,k, where ® is a Kronecker product of matrices.
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DEFINITION 3. An N x N matrix A over F is called a level-k Hl-
. .. . -1 _
czrcula@t matriz if there exists f(z1,%a,...,%k) = Y00 - Dirg
@iy..ip 27 - Ty € Flzy, ..., z] such that
n1—1 nk—l ) )
A = f(al, N ,O’k) = z e Z ail,,,ika? .. .O';Ck,
i1=0 ;=0
where the polynomial f(z1,z9,..., ) is called an adjoint polynomial of
A.

By the above representation, we know that level-k II-circulant matri-
ces have very nice structure, which can be related to P;. Since P} = I,,,,
the product of two level-k I-circulant matrices is a level-k Il-circulant
matrix. Furthermore, level-k II-circulant matrices commute under mul-
tiplication and A~ is also a level-k II-circulant matrix. Let

Floy,...,0k] = {A|A = f(o1,...,0k), f(z1,...,2k) € Flz1,...,2k]}

It is a routine to prove that F[oy, ..., 0] is a commutative ring with the
matrix addition and multiplication.

DEFINITION 4. Let I be a non-zero ideal of the polynomial ring
Flyi,...,y]. Then I is called an annihilation ideal of square matri-
ces Ai,..., A, denoted by I(Aq,...,As), if f(A1,...,4;) = 0 for all
f(yla"'7yt) €L

DEFINITION 5. Suppose that Aj,..., A; are not all zero matrices.
The unique monic polynomial p(z) of minimum degree that simultane-
ously annihilates Aj,..., A; is called the common minimal polynomial
of Ay,..., A .

We give the special case of [1, Theorem 2.4.10] here for the conve-
nience of applications.

LEMMA 1. Let I be an ideal of Flx1,...,zx|. Given f1,...,fm €
F[z1,...,zk|, consider the following F-algebra homomorphism

0 :Flyr,...,ym] — Flz1,...,zx]/I
1~ fi+l

Let K = (L,y1 — f1,...,Ym — fm) be an ideal of F(z1,..., 2k, y1,. .-,
ym] generated by L y1 — f1,...,Ym — fm. Then kerop=KNF[y1,...,ym]

LEMMA 2. Flzy,..., 2]/ (zT — 1,...,2,F — 1) 2 Floy, ..., 0k
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Proof. Consider the following F-algebra homomorphism
¢ :Flzy,...,zx] — Floi,...,ox
f(:El,...,CI?k) (amd A=f(0’1,...,0k)

for f(z1,...,zx) € Flz1,...,zx). It is clear that ¢ is an F-algebra epi-
morphism. So we have

¢ : Flzy,...,zx)/kerp = Floy,. .., ok

We prove that kerp = (z7* — 1,252 — 1,...,z;* — 1) as following.

Since 0]" — I, = 0 for ¢ = 1,2,...,k, then z* — 1 € kerp for
i=1,2,...,k. Hence kerp D (z]' — 1,252 —1,...,2.* - 1).

For any f(z1,...,zx) € Flz1,...,2k], we have A = f(o4,...,01) = 0.
Fix the lexicographical order on F[z1,...,z¢] with 1 > 23 > -+ - > .
z1' —1 dividing f(z1,...,2x), there exist uy (z1, ..., zx), v1(z1,...,2%) €
Flz1,...,zx] such that

f(xl, - ,xk) = ul(xl, - ,xk)(l‘?l - 1) + U1(CB1, - ,xk),
where vi(z1,...,2zx) = 0 or the largest degree of x; in vy(z1,...,2k) is
less than n;.

Ifvi(z1,...,2) =0, then f(z1,...,2%) € (7' — 1,252 —1,..., 2 —
1). Otherwise, z5% —1 dividing v (21, . . ., Zk), there exist ug(xy, .. ., zk),
vo(z1,...,2k) € Flz1, ..., zx] such that

’U1(£131, . ,a:k) = UQ(xl, - ,:L‘k)(ng — 1) +'U2(.’L‘1,. .. ,.’Ek),

where vo(z1,...,25) = 0 or the largest degree of z3 in va(z1,...,Zk)
is less than ng. If vo(z1,...,2x) = 0, then f(z1,...,2x) € (27" — 1,
z3?—1,...,2.* —1). Otherwise, if va(z1,...,2x) # 0, the largest degree
of z1 in va(®1, . .., xx) is less than ny because z; does not appear in x5 —
1,z5% — 1 dividing va(z1,...,zk), there exist uz(x1,...,zx),v3(z1,. ..,
zx) € Flz1, ...,z such that

va(®y, ..., k) = uz(@y, ..., zx)(@3® — 1) +v3(z1,. .., 2k),
where v3(z1,...,2r) = 0 or the largest degree of z3 in v3(x1,...,2) is
less than n3. If vs(z1,...,zx) =0, then f(z1,...,zx) € (2]' — 1,25% —
1,...,zz* —1). Otherwise, if v3(21,...,2) # 0, the largest degrees of z;
and x in v3(z1,...,zx) are less than ny and no, respectively, because z;
and z2 do not appear in z5* — 1. Continuing this procedure, there exist
u1(z1, ..., Tr), u2(T1, . ., Tk), - o Uk (L1, - - o, TE), Vk(21, . .., 7)) € Flzy,
..., Zg] such that

f(.’L‘l,.. . ,CL‘k) = ul(l‘l, - ,.’L‘k)(ljln — 1) 4+ .-

+ uk(asl, e ,xk)(xzk — 1) + ’Uk(xl, Ces ,l‘k),
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where vg(z1, ..., zx) = 0 or the degrees of x1, 22, . .., zx in v (21, ..., Tk)
are less than ny,ns, ..., ng, respectively. If vg(z1,...,zx) = 0, then
flz1,...,zx) € (27 — Lah? — 1,..., 20k — 1).

Suppose that vg(zy,...,zx) # 0, then vg(o1,...,0%) = 0, because
flo1,...,06) =0 and )" — I, = 0 for all 4 = 1,2,...,k. Since the
degrees of x1,z2,...,x in vg(z1,...,2;) are less than nq,no, ..., ng,
respectively, the coefficients of all terms in vg(z1, ..., zx) are the entries
of the matrix vg(o1,...,0k). Therefore each coefficient of each term in
vi(z1,...,2k) i8 0, i.e. vg(z1,...,2k)=0. This occurs a contradiction to

(21, -, 2k) # 0.
The following lemma is well known [2].

LEMMA 3. Let A be a non-zero matrix over F, if the minimal poly-
nomial of A is:

p(y) = aoy” + a1y a4 - +an
and ap # 0, then A™! = (1/a,)(—agA" ! — a1 A" 2 — - — ap_11).
The following Lemma is the Exercise 2.38 of [1].

LEMMA 4. Let Li,Lo,...,L,, be ideals of Flz1,x2,...,z| and let
J=(1-3",w,wLy,wlo,..., wynLy) be an ideal of Flzy,x2,.. .,
Tk, W1, .- ., W] generated by 1 -3 1", w;,wi1Li,wals, ..., wnLy. Then

?;1 Lz = Jn]F[.’El,l‘z, e .,xk].

2. Main results and proof

In the section, the algorithm for the minimal polynomial and two
algorithm for the inverse of level-k II-circulant matrix is given here. By
the Lemma 2, we can prove the following Theorem

THEOREM 1. The minimal polynomial of the level-k Il-circulant ma-

trix A € Flo1,...,0k] is the monic polynomial that generates the ideal
(@' =1, 2 = Ly — fz1,..., ) NFy],
where the polynomial f(zi,...,xy) is an adjoint polynomial of A.

Proof. Consider the following F-algebra homomorphism

¢:Flyl — Flzy,..., 2]/ —1,...,2p* = 1) — Floy, ..., 04]
y = flzy,..e)+H @ -1 2k = 1) — A= f(o1,...,0k).
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It is clear that ¢(y) €ker¢ if and only if g(A) = 0. By Lemma 1, we
have

kerg = (27 —1,...,2* =1L,y — f(z1,...,zx)) NFly].

By Theorem 1 and Lemma 3, we know that the minimal polyno-
mial and the inverse of a level-k Il-circulant matrix A € Floy,..., 0]
is calculated by a Grobner basis for a kernel of an F-algebra homo-
morphism. Therefore, we have the following algorithm to calculate
the minimal polynomial and the inverse of a level-k Il-circulant matrix
A= f(or,...,o0):

Step 1. Calculate the reduced Grobner basis G for the ideal

(P = 1,..., 2 — L,y — f(z1,...,2)) NFy].

by CoCoA 4.0, using an elimination order with z; > 22 > -+ > a > .
Step 2. Find the polynomial in G in which the variables z1, z9, ...,
zy, are not appear. This polynomial p(y) is the minimal polynomial of
A.
Step 3. By step 2, if a,, in the minimal polynomial of A

p(y) = aoy" + a1yt + a4 tan
is zero, stop. Otherwise, calculate A~ = (1/a,)(—apA™ ! — a1 A" 2 —
)

EXAMPLE 1. Let A = f(01, 02) be a level-2 II-circulant matrix, where
f(z,y) = 22%y? + 23y +T72%y2 + 523 + 2%y + 42’ + 2y + 9y° + 3zy+a+y+1.
and 01 = P ® I3, 09 = 14, ® P and

000 1 0 0 1
P = CPR=]10 0],
1 000 01 0
0 01 O0
10 0 1000
0100
00 1 0 010
0 0 01

We can now calculate the minimal polynomial and the inverse of A with
coefficients in the field Z; as following:

Program 1.

Use R::=Z/(11)[xyz], Lex;

Set Indentation:
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L=Ideal(z* — 1,3 — 1, 2 — 203y® — 23y — T2%y? — 52° — 2%y — 422
zy? —9? —3zy —x —y— 1);

ReducedGBasis(I);

By Program 1, we have the following reduced Grdbner basis for the
ideal (z* - 1,93 — 1,2 — f(=z,y)):

[212 — 21 — 3210 — 229 — 28 — 327 +42° — 225 — 424 + 223 — 322 + 42+ 4,
T+ 221 + 5210 4429 — 528 — 527 4+ 26 — 52% —~ 524 + 422 + 52+ 2,
y— 21 4+ 5210 — 528 + 457 + 425 + 42% + 427 +- 52— 5]
So the minimal polynomial of A is
A2 213,10 029 28 327 4425 - 225 — 428 4223 322 + 42+ 4.
Calculate the inverse of A
A7l = (1/4)(—AM + A10 4 34% 4248 4 AT 1 348 445
+2A% +44% — 2A% + 34 —4I).
THEOREM 2. The annihilation ideal of the level-k 11-circulant matri-
ces Ay, ..., Ay € Floy,...,ox] is
(x?l _17' .. 7xgk —1,.7/1 _fl(mly' .. axk)" .. ,yt_ft(xl,' .. 7$k)>ﬂF[y1,- .. ayt]a

where the polynomial f;(x1,...,z) is an adjoint polynomial of A;,i =
1,2,...,t.
Proof. Consider the following F-algebra homomorphism
0 :Flys,...,pt] — Flog,...,zx]/(eT = 1,... 2% —1) — Floy, ..., 0%
Yy - fl(zl,...,zk)+(x§l1—1,...,::::’“—1)»—>A1=f1(0'1,...,ak)
v = filw,.oome) H (@0 -1 2k — 1) — Ar = fio,. ., 00).

It is clear that ©(g(y1,...,%)) = 0 if and only if g(A4;,...,4;) =0. So
I(Ay,...,A)) = kerp = INFlyi,..., 4], by Lemma 1.

According to Theorem 2, we give the following algorithm for the anni-
hilation ideal of the level-k Il-circulant matrices :Aj, ..., A¢ € Floy, ...,
ok)

Step 1. Calculate the reduced Grdbner basis G for the ideal

<x?l - 17"'7ka - 17y1 - fl(xlv--yxk)a'-‘vyt - ft(xlv--'axk»
by CoCoA 4.0, using an elimination order with =1 > -+ >z > y1 >
“ e > yk

Step 2. Find the polynomial in G in which the variables x1, z2, ...,
x1 are not appear. Then the ideal generated by these polynomials is the
annihilation ideal of Aq,..., A;.
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To calculate the common minimal polynomial of Aj, ..., A¢, we first
prove the following Theorem. O

THEOREM 3. Let h(z) be the least common multiple of p1(x), pa(x),

.., pe(z). Then NF_( -(:r)) = (h(z)).

Proof For any f(z) € N, (pi(z)), we have p;(z) | f(z) for i =
,k. Since h(z) 1s the least common multiple of p;(z), p2(x),. . .,

pk(m), h(z) | £(z). So f(z) € (h(x)). Hence M, (pi(a)) C (h(a)).

Conversely, p;(z) | h(z) for i = 1,2,...,k. Because h(z) is the least
common multiple of p; (), p2(x),...,pr(x). So ﬂle (pi(z)) 2 (h(z)).

By Theorem 3 and Lemma 4, If the minimal polynomial of A4; is p;(x)
for i = 1,2,...,t, then the common minimal polynomial of Ay,..., A;
is the least common multiple of p1(z), p2(x),...,pt(z). So we have the
following algorithm for the common minimal polynomial of level-k II-
circulant matrices A; = fi(o1,...,0k) fori =1,2,...,¢t

Step 1. Calculate the Grobner basis G; for the ideal (z7* —1,...,
¥ — 1,y — fi(z1,...,7x)) by CoCoA 4.0 for each i =1,2,...,1, using
an elimination order with 1 > -+« > xp > v.

Step 2. Find out the polynomial p;(y) in G; in which the variables
Z1,...,Zx do not appear for each i =1,2,...,1

Step 3. Calculate the Grobner basis G for the ideal (1 — Zle w;,
w1p1(y), - . -, wepe(y)) by CoCoA 4.0, using elimination with wy > --- >
wg > Y.

Step 4. Find out the polynomial p(y) in G in which the variables
wi,...,w; do not appear. Then the polynomial p(y) is the common
minimal polynomial of Aj,..., As. O

ExAMPLE 2. Let A; = f1(01,02) and Az = fa(01, 02) be both level-2
II-circulant matrices, where o7 = P} ® Iy, 00 = I, @ P,

fi(z,y) = 323y + 23y% + 4Py + 52° + z%y® + 62%y* + 5’y +
+3z + i+ 2y +a+ 4P+t y 47,

falz,y) = 22393 + 523y? + 23y + 22 + T2y + 4x?%y? + 2%y + 222
+2y® + Toy? + 3ay + 22+ + 2 + 3y + 2,

and
0010 0010 1000
1000 000 1 0100
P1‘0001’P2_0100714“0010
0100 100 0 000 1
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We calculate the common minimal polynomial of A; and Az in the field
Z1: as following:

Program 2.

Use R::=Z/(11)[xyz], Lex;

Set Indentation;

L=Ideal(z* — 1,y* — 1, z — 323y3 — 23y? — 423y — 5% — 22y — 6222 —
52y — 2% — 3z —xy? — 2y~ — 4P — 2 —y —7);

ReducedGBasis(I);

By Program 2, we obtain the following reduced Grobner basis for the
ideal :

(z* = 1,9* = 1L,z = fi(a,p))

(214 + 2278 4 3212 + 3211 — 2,10 - 529 1 528 — 427 — 26 4 425 — 324 — 323 — 4z,
T—y+ 213 $3212 + 2211 — 29 £ 328 4 227 4 26 525 4324 — 28 — 5224222,

Y3 —y2 4y — 5218 — 212 1 3210 1 528 4+ 327 4 25 — 424 + 523 + 522 + 32 + 3,

yz — 2y + 3213 — 2212 — 211 — 5230 4 28 527 4 526 + 325 — 32% 4 528 — 322 — 42 — 2

So the minimal polynomial p;(z) of A; is
2142213432124 3211 2210 529 1558 45T 504425324328 —4s.

Program 3.

Use R::=7/(11)[xyz], Lex;

Set Indentation;

L=Ideal(x?—1,y* -1, z— 22393 — 523y% — 23y — 22% — 722y3 — 422y —
zy — 22% — xy® — Toy? — 3wy — 2z — y® — y? — 3y — 2);

Reduced GBasis(I);

By Program 3, we get the following reduced Grobner basis for the
ideal (z* - 1,94 -1,z - fa(z,y)):

[216 4 215 — 214 _ 5513 _ 12 _ 511 9,10 _ 4,0 4 4,8 | 5.7 3,6 _ ;5 _ 3,4

~52% 4 322 4 32,

T+ 5218 — 3212 — 2211 12210 4 359 4 528 _ 426 455 — 24 _ 22 15,1,

y— 4215 45214 — 5213 4 212 _ 3,11 4210 529 528 — 227 — 524 4428 £ 222 — 4z — 1].

So the minimal polynomial p2(z) of As is
A6 4,15 14 g 13 12 11 9 10 4.9 4 4.8
+ 527 4+32° — 2° — 321 — 52° + 327 + 3.

Program 4.

Use R::=Z/(11)[uvz], Lex;

Set Indentation;

L=Ideal (1 —u—v,u(z% 42213 + 3212 4+ 3211 — 2210 _ 529 1 5,8 — 4,7
—28 4425 — 324 — 323 — 4z),v(210 4 215 — 214 —5z13 _ 12 _ 511 _ 9,10
—42% + 428 + 527 + 325 — 25 — 324 — 528 4 322 + 32));

ReducedGBasis(I);
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By Program 4, we obtain the following reduced Grobner basis for the
ideal (1 —u — v, up1(2), vp2(2)):

lu+v-1,

vzt + 5uzd 4 3vz? 4 quz — 228 — 4224 2273 £ 3222 | 4221 — 220 _ 4219 4217 _ 5,16
44215 5214 — 2213 4 212 £ 3210 4 59 4 28 _ 527 320 — 25 424 4523 — 222 4 z,
226 9,25 1 523 4 522 3,21 _ ;20 | .19 4 3,18 4 3,17 4 ;15 4 513

+2212 — 5211 + 3210 — 429 + 328 — 425 + 425 + 421 + 523 + 227 - 32].

So the common minimal polynomial p(z) of A; and Aj is

226 — 2225 4 223 4 222 3221 _ 520 4 19 1 3518 4 3217 4 215 4 5,18
+2212 — 521 + 3210 — 429 + 328 — 420 + 425 + 42 4 523 4 222 - 32

In the following, we discuss the singularity and the inverse of a level-k
II-circulant matrix.

THEOREM 4. Let A € Floy,...,01) be an N x N level-k Il-circulant

matrix. Then A is nonsingular if and only if 1 € (f(z1,...,zk), 27" —
1,...,z* — 1), where the polynomial f(z1,...,zx) is an adjoint poly-
nomial of A.
Proof. A is nonsingular if and only if f(z1,...,zs)+ (@] —1,..., 2"
—1) is an invertible element in Flzq,...,z]/{z?* — 1,..., 2% — 1).
By Lemma 2, if and only if there exists
g(@1,. . xE) + (2] =1, 2k — 1)
€ Flzy,...,zg) /(=1 — 1,..., 23" — 1)
such that
flz1, ., ze)g(@, .. me) + (27 — 1,0 2k — 1)
=1+ (2" —1,...,2;* - 1)
if and only if there exist g(zy,...,2x),ui(z1, ..., k), - -, uk(®1,. .., Tk)
€ Flzy, ..., zx] such that
g(x1,. .. ze) f(z1, .. zk) w2, .., 2) (27" — 1)
o (@, me) (2 - 1) =1
if and only if 1 € (f(z1,...,2x), 27" — 1,..., 2% — 1). a

Let A € Floy,...,0k] be an N x N level-k Il-circulant matrix, by
Theorem 4, we have the following algorithm which can find the inverse
of the matrix A:

Step 1. Calculate the reduced Grobner basis G for the ideal

(f(z1,. . ), 2P =1, 2pF — 1),
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where the polynomial f(z1,...,zk) is an adjoint polynomial of A, by
CoCoA 4.0, using a given term order with 1 > --- > zg. If G # {1},
then A is singular. Stop. Otherwise, go to step 2.

Step 2. By Buchberger’s algorithm for computing Grobner bases,
keeping track of linear combinations that give rise to the new polynomi-
als in the generating set, we get g(z1,...,2k), u1(z1,...,Zk), - - -, ug(21,
.+, Z) € Flzq,. .., zk] such that

g(z1,. .. ze) f(z1y - - oy k) +ua (21, - -y k) (27 — 1)
+ ot ug(er, ., o) (@ - 1) = 1.

Then g(z1,...,z) is the adjoint polynomial of A~!. We obtain A~! =
g(O’l, . ,O’k).
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