References
- Nova Science Publishers Iterative Methods for Nonlinear Operator Equations in Banach Spaces S.S.Chang;Y.J.Cho;H.Y.Zhou
- Nonlinear Anal. v.49 Convergence theorems for asymptotically pseudocontractive mappings C.E.Chidume https://doi.org/10.1016/S0362-546X(00)00240-6
- Math. Comput. Modeling v.34 Approximations for fixed points of Φ-hemicontractive mappings by the Ishikawa iterative process with mixed errors Y.J.Cho;H.Y.Zhou;S.M.Kang;S.S.Kim https://doi.org/10.1016/S0895-7177(01)00044-9
- J. Math. Anal. Appl. v.207 Convergence of Ishikawa iterates of quasi-non-expansive mappings M.K.Ghosh;L.Debnath https://doi.org/10.1006/jmaa.1997.5268
- Proc. Amer. Math. Soc. v.35 A fixed point theorem for asymptotically nonexpansive mappings K.Goebel;W.A.Kirk https://doi.org/10.2307/2038462
- Comment. Math. Univ. Carolin v.30 Weak convergence theorems for asymptotically nonexpansive mapping in uniformly convex Banach spaces J.Gornicki
- Israel. J. Math. v.17 Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type W.A.Kirk https://doi.org/10.1007/BF02757136
- J. Math. Anal. Appl. v.259 Iterative sequences for asymptotically quasi-nonexpansive mappings Q.H.Liu https://doi.org/10.1006/jmaa.2000.6980
- J. Math. Anal. Appl. v.259 Iterative sequences for asymptotically quasi-nonexpansive mappings with error member https://doi.org/10.1006/jmaa.2000.7353
- J. Math. Res. Exposition v.20 Convergence theorems of iterative sequences for asymptotically non-expansive mapping in a uniformly convex Banach space Q.H.Liu;L.X.Xue
- Comput. Math. Appl. v.40 Weak and strong convergence theorems for fixed paints of pseudocontractions and solutions of monotone type operator equations M.O.Osilike;D.I.Igbokwe https://doi.org/10.1016/S0898-1221(00)00179-6
- J. Math. Anal. Appl. v.43 Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings W.V.Petryshyn;T.E.Williamson https://doi.org/10.1016/0022-247X(73)90087-5
- J. Math. Anal. Appl. v.158 Iterative construction of fixed points of asymptotically nonexpansive mappings J.Schu https://doi.org/10.1016/0022-247X(91)90245-U
- Bull. Austral. Math. Soc. v.43 Weak and strong convergence to fixed points of asymptotically nonexpansive mappings https://doi.org/10.1017/S0004972700028884
- Proc. Amer. Meth. Soc. v.44 Approximating fixed points of non-expansive mappings H.F.Senter;W.G.Dotson,Jr. https://doi.org/10.1090/S0002-9939-1974-0346608-8
- J. Math. Anal. Appl. v.178 Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process K.K.Tan;H.K.Xu https://doi.org/10.1006/jmaa.1993.1309
- Proc. Amer. Math. Soc. v.122 Fixed point iteration processes for asymptotically nonexpansive mappings https://doi.org/10.1090/S0002-9939-1994-1203993-5
- Nonlinear Anal. v.16 Existence and convergence for fixed points of mappings of asymptotically nonexpansive type H.K.Xu https://doi.org/10.1016/0362-546X(91)90201-B
- J. Math. Anal. Appl. v.224 Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations Y.G.Xu https://doi.org/10.1006/jmaa.1998.5987
- Nonliear functional analysis and its applications I E.Zeidler
- Abstr. Appl. Anal. v.1 Approximating the zeros of accretive operators by the Ishikawa iteration process H.Y.Zhou;Y.T.Jia https://doi.org/10.1155/S1085337596000073
Cited by
- Strong Convergence of an Implicit Algorithm in CAT(0) Spaces vol.2011, 2011, https://doi.org/10.1155/2011/173621
- A Note on “Common Fixed Point of Multistep Noor Iteration with Errors for a Finite Family of Generalized Asymptotically Quasi-Nonexpansive Mappings” vol.2009, 2009, https://doi.org/10.1155/2009/283461
- CONVERGENCE THEOREMS FOR GENERALIZED I-ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN A HADAMARD SPACES vol.31, pp.3, 2016, https://doi.org/10.4134/CKMS.c150167
- Convergence of three-step iterations for asymptotically nonexpansive mappings vol.187, pp.2, 2007, https://doi.org/10.1016/j.amc.2006.09.008
- Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings vol.47, pp.4-5, 2004, https://doi.org/10.1016/S0898-1221(04)90058-2