시간지연 신경망을 이용한 침입탐지 시스템

An Intrusion Detection System using Time Delay Neural Networks

  • 강흥식 (인제대학교 정보컴퓨터공학부) ;
  • 강병두 (인제대학교 대학원) ;
  • 정성윤 (인제대학교 대학원 전산학과) ;
  • 김상균 (인제대학교 정보컴퓨터공학부)
  • 발행 : 2003.08.01

초록

기존의 규칙기반 침입탐지 시스템은 사후처리식 규칙 추가로 인하여 새로운 변종의 공격을 탐지하지 못한다. 본 논문에서는 규칙기반 시스템의 한계점을 극복하기 위하여, 시간지연 신경망(Time Delay Neural Network; 이하 TDNN) 침입탐지 시스템을 제안한다. 네트워크상의 패킷은 바이트 단위를 하나의 픽셀로 하는 0에서 255사이 값으로 이루어진 그레이 이미 지로 볼 수 있다. 이러한 연속된 패킷이미지를 시간지연신경망의 학습패턴으로 사용한다. 정상적인 흐름과 비정상적인 흐름에 대한 패킷이미지를 학습하여 두 가지 클래스에 대한 신경망 분류기를 구현한다 개발하는 침입탐지 시스템은 알려진 다양한 침입유형뿐만 아니라, 새로운 변종에 대해서도 분류기의 유연한 반응을 통하여 효과적으로 탐지할 수 있다.

Intrusion detection systems based on rules are not efficient for mutated attacks, because they need additional rules for the variations. In this paper, we propose an intrusion detection system using the time delay neural network. Packets on the network can be considered as gray images of which pixels represent bytes of them. Using this continuous packet images, we construct a neural network classifier that discriminates between normal and abnormal packet flows. The system deals well with various mutated attacks, as well as well known attacks.

키워드