DOI QR코드

DOI QR Code

Remazol Black B의 호기성 탈색을 위한 백색부후균의 분해 특성 분석

Characterization of Aerobic Decolorization of Remazol Black B by White Rot Fungi

  • 이재화 (신라대학교 공과대학 생명공학과) ;
  • 이은열 (경성대학교 공과대학 식품공학과)
  • 발행 : 2003.08.01

초록

대표적인 azo계 반응성 염료인 Remazol Black B에 대한 탈색능이 우수한 신규 백색부후균인 Phanerochaete sp. EJ-31L의 탈색 특성을 평가해 보았다. 보조 탄소원 농도, 질소원, pH 등의 배양조건이 염료 탈색율에 미치는 영향을 분석한 결과, 3%(w/v)의 sucrore, 0.05%(w/v)의 $(NH_4)_2SO_4$를 첨가한 배지에서 pH 6.5의 조건에서 탈색능이 우수하였다. 혐기적 조건에서는 호기적 조건 대비 27% 수준의 탈색 효율을 보였으며, 진탕배양에서의 탈색율이 정치배양 대비 2배이상 높아 Phanerochaete sp. EJ-31L은 호기적 조건에서 탈색능이 우수함을 알 수 있었다. 초기 Remazol Black B 농도 50 ppm에 대한 회분식 처리시 약 95% 이상의 탈색율을 보여 향후 azo계 염료 처리용 생물공정에 백색부후균인 Phanerochaete sp. EJ-31L을 활용할 수 있을 것으로 기대된다.

White rot fungi, Phanerochaete sp. EJ-31L, was evaluated for its ability to decolorize Remazol Black B, an azo dye that is a widespread pollutant in the wastewater of textile industry. It was observed that extent of decolorization by Phanerochaete sp. EJ-31L was dependent on the concentrations of co-carbon and nitrogen source. Effects of agitation and aeration were studied, and agitated culture at aeration condition resulted in greater extent of decolorization than static culture. Remazol Black B was readily decolorized up to 95% within 64 hr by Phanerochaete sp. EJ-31L.

키워드

참고문헌

  1. Banat, I. M., P. Nigam, D. Singh and R. Marchant. 1996. Microbial decolorization of textile-dye-containing effluents: a review. Biores. Technol. 58, 217-227. https://doi.org/10.1016/S0960-8524(96)00113-7
  2. Cripps, C., J. A. Bumpus and S. C. Aust. 1990. Biodegradation of azo and heterocyclic dyes by Phanerochaete chysosporium. Appl. Environ. Microbiol. 56, 1666-1671.
  3. Field, J. A. E. De Jong, G. Feijoo-Costa and J. A. M. DeBont. 1993. Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol. 11, 44-48. https://doi.org/10.1016/0167-7799(93)90121-O
  4. Kirby, N., R. Marchant, and G. McMullan. 2000. Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol. Lett. 188, 93-96. https://doi.org/10.1111/j.1574-6968.2000.tb09174.x
  5. Meyer, U. 1981. Biodegradation of synthetic organic colorants, pp. 371-385, In Leisinger, T., A. M. Cook, R. Hutter and J. Nuesch (eds.), Microbial degradation of xenobiotic and recalcitrant compounds, FEMS Symposium 12, Academic Press Inc., London.
  6. O'Neill, C., F. R. Hawkes, D. L. Hawkes, N. D. Lourenco, H. M. Pinheiro W. Delee. 1999. Colour in texile effluents-sources, measurement, discharge consents and simulation: a review. J. ChemTechnol. Biotechnol. 74, 1009-1018. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N
  7. Reddy, C. A. 1995. The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6, 320-328. https://doi.org/10.1016/0958-1669(95)80054-9
  8. Stolz, A. 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56, 69-80. https://doi.org/10.1007/s002530100686
  9. Swamy, J. and J. A. Ramsay. 1999. The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Micribial Technol. 24, 130-137. https://doi.org/10.1016/S0141-0229(98)00105-7
  10. Yeh, R. Y. L. and A. Thomas. 1995. Color difference measurement and color removal from dye wastewaters using difference adsobents. J. Chem. Technol. Biotechnol. 63, 55-59 https://doi.org/10.1002/jctb.280630108
  11. Zollinger, H. 1987. Colour chemistry - systhesis, properties and applications of organic dyes and pigments. pp. 92-100, VCH, New York.