DOI QR코드

DOI QR Code

혈관평활근세포에서 Phorbol 12-Myristate 13-Acetate의 전처리가 Interleukin-1β에 의한 Nitrite생성에 미치는 영향

Inhibitory Effect of Phorbol 12-Myristate 13-Acetate on NO Production Induced by Interleukin-1 beta in Aortic Vascular Smooth Muscle Cells of Rats

  • 윤병헌 (경북대학교 의과대학 약리학교실) ;
  • 김인겸 (경북대학교 의과대학 약리학교실) ;
  • 박태규 (경북대학교 의과대학 약리학교실) ;
  • 김중영 (경북대학교 의과대학 약리학교실)
  • 발행 : 2003.08.01

초록

Protein kinase C (PKC)가 interleukin-1 beta (IL-1$\beta$)에 의하여 산화질소(NO) 생성과정에 어떤 역할을 하는지를 검토하기 위하여, 혈관평활근세포에서 PKC 활성제인 phorbol 12-myristate 13-acetate (PMA)로 전처리한 후 IL-1$\beta$에 의하여 야기되는 NO생성을 nitrite ($NO_2$)로 정량하고, RT-PCR method를 이용하여 iNOS 발현에 미치는 영향을 검토하여 다음과 같은 결과를 얻었다. PMA (20, 200 nM)는 IL-1$\beta$에 의한$NO_2$ 생성을 유의하게 증가시켰다. PMA 200 nM, phorbol 12,13-dibutyrate 500 nM로 전처리하여 8, 24시간 노출된 세포에서 IL-1$\beta$에 의한 NO2생성이 현저히 감소되었으나, PKC 비활성제인 4$\alpha$-phorbol-didecanoate 200 nM로 전처리한 경우는 영향을 받지 아니하였다. PMA 농도를 달리하여 24시간 전처리한 경우 IL-1$\beta$에 의한 $NO_2$ 생성의 감소는 PMA의 농도가 20및 200 nM에서 현저하였다. RT-PCR method를 이용하여 iNOS 발현을 검토한바 IL-1$\beta$ 100U/ml에 의한 iNOS발현이 PMA전처리 및 cycloheximide 또는 actinomycin D존재로서 현저히 억제 되었다. 이상의 결과로 미루어 혈관평활근세포에서 PMA 전처리로 야기되는 IL-1$\beta$에 의한 NO 생성의 감소는, PKC 조절저하작용에 의한 iNOS 발현의 억제로 야기되는 것 같다.

To examine the role of protein kinase C (PKC) in regulation of interleukin-1 beta (IL-1$\beta$)-induced iNOS expression, IL-1$\beta$-induced nitrite production was observed in cultured vascular smooth muscle (VSM) cells pretreated with phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-butyrate (PDB) as PKC activator; 4$\alpha$-phorbol-didecanoate (PDD) as PKC non-activator. Nitrite production induced by IL-1$\beta$ was increased by the presence of increasing concentration of PMA ranging from 2 to 200 nM. However, in VSM cells pretreated with PMA and PDB, IL-1$\beta$-induced $NO_2$ production was decreased in proportion to the duration of pretreatment, and most significantly decreased in pretreatment time of 24 hours. Using RT-PCR method, the expression of iNOS mRNA induced by IL-1$\beta$ was decreased in VSM cells pretreated with PMA 200 nM for 24 hours. These results suggest that decrease in IL-I$\beta$-induced nitrite production by the pretreatment of PMA result from inhibition of iNOS expression and the inhibition related to PMA-induced PKC down-regulation.

키워드

참고문헌

  1. Andrea, J. E. and M. P. Walsch. 1992. Protein kinase C of smooth muscle. Hypertension 20, 585-595. https://doi.org/10.1161/01.HYP.20.5.585
  2. Bogdan, C., Y. Vodovotz and C. Nathan. 1991. Macrophage deactivation by interlukin 10. J. Exp. Med. 174, 1549-1555. https://doi.org/10.1084/jem.174.6.1549
  3. Fast, D. J., R. C. Lynch and R. W. Leu. 1993. Cyclosporin A inhibits nitric oxide production by L929 cells in response to tumor necrosis factor and interferon gamma. J. interferon Res. 13, 325-240.
  4. Furchgott, R. F and J. V. Zawadzki. 1980. The obligatory role of endotherlial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376. https://doi.org/10.1038/288373a0
  5. Furchgott, R. F., P. D. Cherry and J. V. Zawadzki. 1984. Endothelial cells as mediator of vasodilation of arteries. J. Cardiovasc. Pharmacol. 6(Suppl.2), S336-343 https://doi.org/10.1097/00005344-198406002-00008
  6. Gella, D. A., M. E. De Vera, D. A. Russel, R. A. Shapiro, A. K. Nussler, R. L. Simmons and T. R. Billiar. 1995. A central role for IL-beta in the in vitro and in vivo regulation of hepatic inducible nitric oxide synthase. IL-1beta induces hepatic nitric oxide synthesis. J. Immunol. 155, 4890-4898.
  7. Geng, Y. J., Q. Wu and G. K. Hansson. 1994. Protein kinase C activation inhibits cytokine-induced nitric oxide synthesis in vascular smooth muscle cells. Biochem. Biophys. Acta. 1223, 125-132. https://doi.org/10.1016/0167-4889(94)90081-7
  8. Hortelano, S., A. M. Genaro and L. Bosca. 1992. Phorbol esters induce nitric oxide synthase activity in rat hepatocytes. Antagonism with the induction elicited by lipopolysaccharide. J. Biol. Chem. 267, 24937-24940.
  9. Junquero, D. C., T. Scott-Burden, V. B. Schini, and P. M. Vanhaoutte. 1992. Inhibition of cytokine-induced nitric oxide production by transforming growth factor- beta1 in human smooth muscle cells. J. Physiol (London). 454, 451-465. https://doi.org/10.1113/jphysiol.1992.sp019273
  10. Kaur, H. and B. Halliwel. 1994. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitroglycerine in serum and synovial fluid from rheumatoid patients. FEBS Lett. 350, 9-12. https://doi.org/10.1016/0014-5793(94)00722-5
  11. Kharitonov, S. A., D. Yates, R. A. Robbins, R. Logan-Sinclair, E. A. Shinebourne, and P. J. Barnes. 1994. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343, 133-135. https://doi.org/10.1016/S0140-6736(94)90931-8
  12. Kim, I. K. 1996. Experimental intervention to reverse inhibition of nitric oxide production by cyclosporin A in rat aortic smooth muscle cells. Kor. J. Phamacol. 32, 211-219.
  13. Kunz, D., G. Walker, W. Eberhardt, U. K. Messmer, A. Huwiler and J. Pfeilschifter. 1997. Platelet-derved growth factor and fibroblast growth factor differentially regulate interlukin-1 beta and c AMP-induced nitric oxide synthase expression in rat renal mesangial cells. J. Clin. Invest. 100, 2800-2809. https://doi.org/10.1172/JCI119827
  14. Laffi, G., M. Foschi, E. Masini, A. Simoni, L. Mugnai, G. La Villa, G. Barletta, P. F. Mannaioni and P. Gentilini. 1995. Increased production of nitric oxide by neurophils and monocytes from cirrhotic patients with ascites and hyperdynamic circulation. Hepatology 22, 1666-1673.
  15. Lee, H. Y. 1996. Role of protein kinase C in nitrite production induced by interleukin-1 beta in aorta vascular smooth muscle cells from rats, The Doc. thesis in Kyungpook Univ. pp.1-29.
  16. Liou, Y. M. K. G. and Morgan KG. 1994. Redistribution of protein kinase C isoforms in association with vascular hypertrophy of rat aorta. Am. J. Physiol. 267, 980-989.
  17. Li, S., F. L. Huang, Q. Feng, J. Liu, S. X. Fan and T. M. McKenna. 1998. Overexpression of protein kinase C-alpha enhance lipopolysaccharide-induced nitric oxide formation in vascular smooth muscle cells. J. Cell Physiol. 176, 402-411. https://doi.org/10.1002/(SICI)1097-4652(199808)176:2<402::AID-JCP19>3.0.CO;2-4
  18. Liu, J., M. L. Zhao, C. F. Brosnan, and S. C. Lee. 1996. Expression of type II nitric oxide synthase in primary human astrocytes and microglia: Role of IL-1beta and IL-1 receptor antagonist. J. Immunol. 157, 3569-3576.
  19. Moncana, S., R. M. Palmer and E. A. Higgs. 1991. Nirtric oxide; physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
  20. Muhl, H and J. Pfeilschifter. 1994. Possible role of protein kinase C epsilon isoenzyme in inhibition of interleukin-1 beta induction of nitric oxide synthase in rat renal mesangial cells. Biochem. J. 303, 607-612.
  21. Muniyappa, R., P. R. Srinivas, Ram J. L, M. F. Walsh and J. R. Sower. 1998. Calcium and protein kinase C mediates high-glucose-induced inhibition of inducible Nitric oxide synthase in vascular smooth muscle cells. Hypertension 31, 289-295. https://doi.org/10.1161/01.HYP.31.1.289
  22. Nakayama, I., Y. Kawahara, T. Tsuda, M. Okuta, and M. Yokoyama. 1994. Angiotensin II inhibits cytokinstimulateed inducible nitric oxide synthase expression in vascular smooth muscle cells. J. Biol. Chem. 269, 11628-11633.
  23. Nunokawa, Y., N. Oshida and S. Tanaka. 1993. Colony of inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochem. Biophysic. Res. Commun. 181, 852-857. https://doi.org/10.1016/0006-291X(91)91268-H
  24. Palmer, R. M. J., A. G. Ferringe and S. Moncana. 1987. Nitirc oxide release accounts for the biological activity of the endothelium derived relaxing factor. Nature 327, 524-526. https://doi.org/10.1038/327524a0
  25. Paul, A., R. H. Pendreigh and R. Plevin. 1995. Protein kinase C and tyrosine kinase pathways regulate lipopolysaccharide-induced nitric oxide synthase activity in RAW 264.7 murine macrophages. Br. J. Pharmacol. 114, 482-488. https://doi.org/10.1111/j.1476-5381.1995.tb13252.x
  26. Paul, A., K. Doherty and R. Plevin. 1997. Differential regulation by protein kinase C isoforms of nitric oxide synthase induction in RAW264.7 macrophage and rat aortic smooth muscle cells. Br. J. Pharmacol. 120, 940-946. https://doi.org/10.1038/sj.bjp.0700976
  27. Sands, W.A., J. S. Clark, F. Y. and Liew. 1994. The role of a phosphatidylcholine-specific phospholipase C in the production of diacylglycerol for nitric oxide synthesis in macrophages activated by IFN-gama and LPS. Biochem. Biophys. Res. Commun. 199, 461-466. https://doi.org/10.1006/bbrc.1994.1251
  28. Severn, A., M. J. Wakelam, F. Y. and Liew. 1992. The role of protein kinase C in the induction of nitric oxide synthesis by murine macrophages. Biochem. Biophys. Res. Commun. 188, 997-1002. https://doi.org/10.1016/0006-291X(92)91330-S
  29. Stabel, S and P. J. Parker. 1993. Protein kinase C. Internat. Encycloped. Pharmacol Ther. 139, 167-198.
  30. Vodovotz, Y., C. Bogdan, J. Paik, Q. W. Xie and C. Nathan. 1993. Mechanism of suppression of macrophage nitric oxide release by transforming growth factor beta. J. Exp. Med. 178, 605-613. https://doi.org/10.1084/jem.178.2.605
  31. Yoon, K. S., J. B. Jun, D. W. Kim, S.L. Chung and M.K. Kim. 1995. The effects of lipopolysaccharide on cytokinine gene expression of cultured keratinocytes and peripheral mononuclear cells. The Kyungpook Univ. Med. J. 36, 591-603.