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A VANISHING THEOREM FOR L?
COHOMOLOGY ON COMPLETE MANIFOLDS

JEFFERY D. MCNEAL

ABSTRACT. We establish a vanishing theorem on the square-inte-
grable cohomology associated to the Cauchy-Riemann complex on
some complete Kaehler manifolds. The hypothesis needed for this
result is a growth condition on a primitive of the Kaehler form.

1. Introduction

Let (X™,w) be a complete, Kdhler manifold, with dimcX = n. A
basic question, pertaining both to the function theory and topology on
X, is: when are there non-trivial harmonic forms on X, in the various
bi-degrees (p, q) determined by the complex structure? When X is not
compact, a growth condition on the harmonic forms at infinity must
be imposed, in order that the answer to this question be useful. A
natural growth condition is square-integrability; if Q@g (X) denotes the

L2-forms of type (p, q) on X and ’H%’(X ) the harmonic forms in Q’E’é‘)l (X)),
one version of the basic question is: what is the structure of Hf3i(X),
0<pg<n?

Recall that the Hodge theorem for a compact manifold Y says that
each (real) cohomology class of Y is represented by a unique harmonic
form. This marvelous theorem creates a dictionary between the topology
of Y (its real cohomology) and the analysis, or geometry, of Y (the space
of solutions to Au = 0), and allows results on either class of objects to
be transformed back and forth. The study of ’H?Q")J(X ), a question of the

so-called L2-cohomology of X, is rooted in the attempt to extend Hodge
theory to non-compact manifolds. This extension is not yet complete,
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but there are numerous partial results about the L2-cohomology of non-
compact manifolds.

In this note, we establish a vanishing result on Hé’é‘)z(X ) when p+q #
n, under the hypothesis that a primitive of w does not grow too fast
at infinity. This result extends a vanishing theorem from [16] in two
ways: 1. we remove the assumption from [16] that the fundamental
form w is given by a global potential, and 2. we allow faster growth
on the primitive of w than was stated in [16]. An application of the
vanishing results in [16] is given by Hunsicker in [13]. We also mention
that the results in [16] themselves were extensions of vanishing theorems
obtained by Gromov [11], and that somewhat similar extensions of [11]
were obtained by Cao-Xavier (4] and Jost-Zuo [14]. The papers by An-
derson [1], Atiyah-Patodi-Singer [2], Dodziuk [5], Donnelly-Fefferman
[8], Donnelly [6]-[7], Zucker [22] and papers cited in their references,
are recommended as sources for further, significant results on analytic
aspects of L2-cohomology.

There actually are two separate vanishing theorems in [16], only one
of which is extended in this paper. The other result, Theorem 2.1 in
[16], gave solutions to the first-order operators d and §*, with estimates
in the w-metric, in addition to the vanishing of H‘E’z")l (X). This theorem,
of course, required stronger control at infinity on a primitive of w. In the
last section of this paper, we examine some examples which illustrate
the borderline between manifolds where we have vanishing of Hfy(X)
without estimates on the first-order operators 8 and §*, i.e. manifolds
where only Theorem 2.6 in [16] (or, more generally, Theorem 1 below)
hold, and cases covered by Theorem 2.1 in [16].

2. Background and statement of result

Throughout, (X,w) denotes a connected, complete, Kdhler manifold
of complex dimension n. The fundamental form w, which in local coor-
dinates (z1,...,2n) can be written as w =4}, ; gridzi A dZ, gives rise
to a metric g, which has the local expression

9=">_ gudz ® dz,
PY

if we view g as a complex inner product on T'9(X). The space of
all measurable (p,q)-forms on X will be denoted QP9(X). The inner
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product g may be functorially lifted to all the spaces 279(X), and we
let (-,-) denote this pointwise inner product.
The global inner product is defined

n times
where dV,, = c,w A--+ Aw is the volume form determined by w. We
also write |u® = (u,u), |[u||> = [y |u|>dV,,, and let
Q@‘;(X,w) = {u € Q7Y X) : ||lul| < o0}
Let ¢ denote the formal adjoint of the Cauchy-Riemann operator 0
relative to the inner product above. The complex Laplacian, O = 0¥ +

99, is defined on Dom(0J), where Dom(0) is domain of the unbounded
operator [J. The L? harmonic forms are denoted

HE(X) ={¢ € Q5(X) : O¢ = 0}.

Here O¢ = 0 is meant in the sense of distributions.
Recall that a function £ : X — R is called an ezhaustion function
if, for any k € R,

- Xpy={pe X:E(p)<k}CX.

We shall only seriously consider C! exhaustion functions below.

DEFINITION 1. Let f : R — R™T be continuous and E be a C!
exhaustion function. We say that a 1-form o on X is f(E)-bounded, if

la(p)| < f(E(p)), for all p € X.

Note that the (regularized) distance function, p, associated to the
metric g has the property that its differential dp is f(E)-bounded for
f = constant and for any exhaustion function E.

DEFINITION 2. The Kéhler manifold (X™,w) is vanishingly exhausti-
ble if there exists a C! exhaustion function E on X, continuous, non-
decreasing functions f,g : R — RT, and a C! 1-form « on X such
that

(i) do = w,
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(ii) ais f(E)-bounded, dF is g(E)-bounded,

(iii) the series
> 1
2 g(k)f (k)

k=N

diverges.

Note that since dw = 0 (the Kéhler condition), a solution to du =
w exists locally. However, for more topological purposes than we are
concerned with here, Definition 2 should probably be formulated on the
universal cover of X. That is, if X is a simply-connected space which
covers X, w lifts to a Kahler form @ on X and one can always find a
global solutlon to Ot = @; thus it is not necessary to hypothesize (i)
on X. (This was what Gromov did in [11] with his condition of Kihler
hyperbolicity). Conditions (ii) and (iii) are not automatic and, taken
together, are the growth hypotheses mentioned in the introduction.

The vanishing result that follows from these notions is

THEOREM 1. Let (X™,w) be a complete, Kahler manifold which is
vanishingly exhaustible. Then

HE(X)=0 if p+g#n.

Let us explicitly connect this to previous results. Theorem 2.6 of [16]
follows from Theorem 1: there we assumed w had a global potential,
w = 100\ for some smooth function A, with certain estimates, and it is
easy to check that these estimates imply w satisfies the hypotheses of
Theorem 1 with f(z) = g(z) = /A + Bz and E(p) = A(p). Theorem 2
of [4] similarly follows from our Theorem 1, by taking f(z) = c(1 + ),
g(z) = 1, and E(p) = p(p,po) where p(p,po) denotes the Riemannian
distance between p and a fixed base point pg € X.

Note that the hypothesis (ii) in Theorem 1 simplifies when w is given
by a global potential which is also an exhaustion function on X, e.g.
the Bergman metric for X a pseudoconvex domain in C". To illustrate,
suppose that X CC C™ and w = 309\ for a function A\ € C?(X) which
satisfies A(z) — oo as z — bX. Suppose that there is no C < oo such
that

) o §2\
Z 5_ p)§J|2 < CAp) - Z 82,07 === (0)¢5ék, EeCn,
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(so Theorem 2.6 in [16] does not apply), but that there is some K < 0o
such that

n

n a .
| E 8 p)§J|2 < KX(p)log A(p E 52, 8‘ §Jfk, EeC”,
3=1 J

Jyk=

Then Theorem 1 implies that ’H(Q)(X) = 0if p + q # n, by letting
f(z) =g(z) = VKz -logz.

3. Proof of Theorem 1

The proof of Theorem 1 follows very closely the method used to prove
Theorem 2 in [4] and Theorem 2.6 in [16].

We first recall some basic facts from Kahler geometry. For a proof of
the first 2 results, see [21] or [10]; for a proof of the third result, see [9].

LEMMA 3.1. On a Kéahler manifold (X", w), let

LB)=wApB

be the operator of multiplication by the Kahler form (the Lefschetz
map). Then
O,L] = 0.
Thus, if 8 € H%1(X), then L(8) € HIFH 1 (X).
LEMMA 3.2. The operator

FHE () — HE )

is injective, if p+ g < n.

LEMMA 3.3. On a complete, Kahler manifold (X", w), if u € H(Q)
(X)), then u is in the domain of the operators 0 and 8%, and Ou = Yu = 0.

Proof of Theorem 1. Let x : R — R be smooth, 0 < y < 1, with

lifz > 1
“@“{Oﬁxgu

and define, for k € Z*,

xx(p) = x (k- E(p)).
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Note that supp xx C Xx and xx =1 on Xg_1.
Suppose that p+q < n and let h € H’(’é‘)I(X). By Lemma 3.1, wAh €

'H’ggl’”l(X ) and, so, Lemma 3.3 implies that w A h is ¥-closed. Let
h = a A h. Since xx - h has compact support, an integration by parts

gives

(3.1) (AR, 8k - b)) = (9w A B, X - )
=0.
Again by Lemma 3.3, h is 0-closed. Thus
(3.2) O(xt - h)=x(k—E)-0EAaAh
+ Xk - wAh.

We now substitute (3.2) into (3.1) and consider the two terms coming
from the right-hand side of (3.2) separately. For the first term, the fact
that supp x} C X \ Xx—1 and the fact that w is bounded in the <,>
inner product imply
(3.3)

l(w/\h,xfc-éE/\a/\h)IS/ |OF A a||hf? dV
Xe\Xk—1

< / (F(B)g(E)) |hj2av
X\ Xk—1

< (F(k) - g(k)) /X o eay

for the functions f, g in Definition 2. The second inequality follows from

our hypotheses on E and «. The assumption that h € Hfé'j (X) implies

that there exists a subsequence {k;} such that
(3.4) £k - (k) / A2 — 0 as [ — oo,
Xy \Xkl—l

Otherwise, for some ¢ > 0,

h2= - h2
/X| | ;/X’C\XkJ |
22 1
22 Fi900)

k=1
= OQ.
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a contradiction.
So, for the sequence given by (3.4), it follows from (3.3) that

(3.5) llirgxo (wAhxp, - OEANaAh) =0.

For the term coming from the second term on the right-hand side of
(3.2), the dominated convergence theorem implies

(3.6) klim (WA h, Xk -wAR) = |lwA Al
—00

Substituting (3.5) and (3.6) into (3.1), it follows that w A h = 0.
Lemma 3.2 implies that A = 0. Finally, Poincaré duality extends the
argument just given to the case when p + ¢ > n. This completes the
proof. |

4. Strictly versus weakly Kahler convex

In this section we assume that w = i89\, for some A € C%(X) with
A > 1 on X; many standard Kahler manifolds are of this type. Suppose
that for all p € X, there exists constants A, B < oo such that

(4.1) idA(p) A OA(p) < [A+ B A(p)] i00A(p),

where the inequality is meant in the sense of currents. In [16], (X, w) was
then called Kdhler conver and, if B could be chosen strictly less than 1
n (4.1), (X,w) was called strictly Kdhler convezx. The distinction was
made because if (X,w) was Kéhler convex than we could only conclude
that HE{(X) = 0if p+ g # n (Theorem 2.6 [16]) but, if (X,w) was
strictly Kéhler convex, then we could also show there exist constants
m, M depending only on universal constants and the constants A, B in
(4.1), such that

1 = -
4.2 — 2 < ||Bul|? + ||16*ul|?, API(X).
@2) mip+a=nl [ sgphl < 10ulP+ 18R, ueABIX)

(Theorem 2.1 (16]). Inequality (4.2) is highly desirable, as it gives infor-
mation about the first-order 9-cohomology, in addition to the second-
order [J-cohomology; see, for example, Proposition 2.4 and Corollary 2.5
in [16].
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There are a number of natural situations where (X, w) just fails to be
strictly Kéhler convex, i.e. (4.1) holds with B = 1. A family of geomet-
rically interesting examples, which interpolate between cases where (4.1)
holds for B < 1 and where it does not, is the following. Let h: C* — C
be a holormorphic and non-constant. Let V' = {z : h(z) = 0}, and con-
sider X = C" \ V with various metrics constructed from |h|?. First,
for s > 0, consider w™* = $00A~° with A™° = (|h|?)~°. Computing
derivatives gives

(43) At =—s (1) hah,

and

(4.4)
—s —s—1 T —-5—2 T
A58, = —s (|hP?) hawhz +5(s +1) (|R2) 7" |h[hy, hs,

212k

= 2 (1h?) ™" hayha

Clearly, (4.3) and (4.4) show that (X,w™%) is Kéhler convex, and they
also show that the smallest B that satisfies (4.1) is B = 1. So, in these
cases, while ’Hfz")l(X,w_s) =0 if p+ ¢ # n, we get no estimates on 0 in
the metric w™2.

On the other hand, considering A\° = (|h|?)%, s still positive and, to
get a complete metric, s < 1, computations analogous to (4.3) and (4.4)

show that

1OA]* =5 (|hf2)* " o[
108X =52 (|h|2)" " idh A Bh.

Since 2s—1 > s—1, we have that (4.1) holds with an arbitrarily small B,
or even B = 0; thus (4.2) is satisfied and we obtain good estimates on the
Cauchy-Riemann operator in the norms determined by w = i98(|h|2)s.
For more information about related weighted estimates for 8, we refer
to the paper by Berndtsson [3].

Finally, for (regularized) Poincaré type metrics, w = i09(— log(|h|?
+¢€)), it is straightforward to compute as above that (4.1) is satisfied,
but the smallest B is B = 1; we are therefore again in the situation of
“vanishing without estimates”.



1]
(2]
(3]

4]
5]
6]
7
]
9
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
18]
(19]
20]

21]

A vanishing theorem for L2 cohomology 755
References

M. Anderson, L?-harmonic forms on complete Riemannian manifolds, Lecture
Notes in Math. 1339, Springer-Verlag (1989), 1-19.

M. Atiyah, V. Patodi, and I. Singer, Spectral asymmetry and Riemannian ge-
ometry, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.

B. Berndtsson, Weighted estimates for the 8 equation, Complex Analysis and
Geometry, Proceedings of a a conference at Ohio State University, Walter De
Gruyter 9 (2001), 43-58.

J. Cao and F. Xavier, Kdhler parabolicity and the Euler number of compact
manifolds of non-positive sectional curvature, Math. Ann. 319 (2001), 483-491.
J. Dodziuk, L? harmonic forms on complete manifolds, Seminar on differential
geometry, Ann. of Math. Stud., Vol. 102 (1982).

H. Donnelly, L? cohomology of pseudoconvexr domains with complete Kéhler
metric, Mich. Math. J. 41 (1994), 433-442.

, L? cohomology of the Bergman metric for weakly pseudoconvexr do-
mains, Ill. Math. J. 41 (1997), 151-160.

H. Donnelly & C. Fefferman, L? cohomology and index theorem for the Bergman
metric, Ann. Math. 118 (1983), 593-618.

M. Gafiney, A special Stoke’s theorem for complete Riemannian manifolds, Ann.
Math 60 (1954), 140-145.

P. Griffths and J. Harris, Principles of algebraic geometry, John Wiley & Sons,
1978.

M. Gromov, Kdihler hyperbolicity and L?-Hodge theory, J. Diff. Geo. 33 (1991),
263-292.

G. Herbort, Logarithmic growth of the Bergman kernel for weakly pseudoconvez
domains in C? of finite type, Manuscripta Math. 45 (1983), 69-76.

E. Hunsicker, L2 harmonic forms for a class of complete Kihler metrics, Mich.
Math. J. 50 (2002), 339-349.

J. Jost and Z. Zuo, Vanishing theorems for L?-cohomology on infinite coverings
pf compact Kdhler manifolds and applications in algebraic geometry, Comm.
Anal. Geo. 8 (2000), 1-30.

J. Lott, The zero-in-the-spectrum question, L'Enseign. Math. 42 (1996), 341—
376.

J. D. McNeal, L2 harmonic forms on some complete Kihler manifolds, Math.
Ann. 323 (2002), 319-349.

A. Nadel, Multiplier ideal sheaves and Kdhler-Einstein metrics of positive scalar
curvature, Ann. Math. 132 (1990), 549-596.

T. Ohsawa, A remark on the completeness of the Bergman metric, Proc. Japan
Acad. Sci. 57 (1981), 238-240.

, On the L? cohomology groups of isolated singularities, Adv. Stud. Pure.
Math., Math. Soc. Japan 22 (1993), 247-263.

, Applications of L? estimates and some complex geometry, Geometric
Complex Analysis, Hayama. World Scientific (1996), 505-523.

R. O. Wells, Differential Analysis on Complex Manifolds, Springer—Verlag, 1980.




756 Jeffery D. McNeal

[22] S. Zucker, Hodge theory with degenerating coefficients. L? cohomology in the
Poincaré metric, Ann. Math. 109 (1979), 415-476.

Department of Mathematics

Ohio State University

Columbus, Ohio, 43210

E-mail: mcneal@math.ohio-state.edu



