PREOPEN SETS IN SMOOTH BITOPOLOGICAL SPACES ### Eun Pyo Lee ABSTRACT. In this paper, we introduce the notions of (T_i, T_j) -fuzzy (r, s)-preopen sets and fuzzy pairwise (r, s)-precontinuous mappings in smooth bitopological spaces and then we investigate some of their characteristic properties. ### 1. Introduction The concept of fuzzy sets was introduced by Zadeh [13] in his classical paper. Using the concept of fuzzy sets Chang [2] introduced fuzzy topological spaces and several other authors continued the investigation of such spaces. Chattopadhyay et al. [4] and Ramadan [9] introduced new definition of smooth topological spaces as a generalization of fuzzy topological spaces. Kandil [6] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces. Lee et al. [7] introduced the concept of smooth bitopological spaces as a generalization of smooth topological spaces and Kandil's fuzzy bitopological spaces. In this paper, we introduce the concepts of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen sets and fuzzy pairwise (r, s)-precontinuous mappings in smooth bitopological spaces and then we investigate some of their characteristic properties. # 2. Preliminaries In this paper, I will denote the unit interval [0,1] of the real line and Received February 18, 2002. ²⁰⁰⁰ Mathematics Subject Classification: 54A40. Key words and phrases: smooth bitopological spaces, preopen sets, pairwise precontinuous mappings. $I_0 = (0,1]$. For a set X, I^X denotes the collection of all mappings from X to I. A member μ of I^X is called a fuzzy set of X. By $\tilde{0}$ and $\tilde{1}$ we denote constant mappings on X with value 0 and 1, respectively. For any $\mu \in I^X$, μ^c denotes the complement $\tilde{1} - \mu$. All other notations are the standard notations of fuzzy set theory. A Chang's fuzzy topology on X [2] is a family T of fuzzy sets in X which satisfies the following properties: - (1) $\tilde{0}, \tilde{1} \in T$. - (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$. - (3) If $\mu_k \in T$ for each k, then $\bigvee \mu_k \in T$. The pair (X, T) is called a *Chang's fuzzy topological space*. Members of T are called T-fuzzy open sets of X and their complements T-fuzzy closed sets of X. A system (X, T_1, T_2) consisting of a set X with two Chang's fuzzy topologies T_1 and T_2 on X is called a Kandil's fuzzy bitopological space. A smooth topology on X [4, 9] is a mapping $\mathcal{T}: I^X \to I$ which satisfies the following properties: - (1) $T(\tilde{0}) = T(\tilde{1}) = 1$. - (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$. - (3) $\mathcal{T}(\bigvee \mu_k) \ge \bigwedge \mathcal{T}(\mu_k)$. The pair (X, \mathcal{T}) is called a *smooth topological space*. For $r \in I_0$, we call μ a \mathcal{T} -fuzzy r-open set of X if $\mathcal{T}(\mu) \geq r$ and μ a \mathcal{T} -fuzzy r-closed set of X if $\mathcal{T}(\mu^c) \geq r$. A system $(X, \mathcal{T}_1, \mathcal{T}_2)$ consisting of a set X with two smooth topologies \mathcal{T}_1 and \mathcal{T}_2 on X is called a *smooth bitopological space*. Throughout this paper the indices i, j take values in $\{1, 2\}$ and $i \neq j$. Let (X, \mathcal{T}) be a smooth topological space. For each $r \in I_0$, an r-cut $$\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \ge r \}$$ is a Chang's fuzzy topology on X. Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. Then a smooth topology $T^r: I^X \to I$ is defined by $$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ r & \text{if } \mu \in T - \{\tilde{0}, \tilde{1}\}, \\ 0 & \text{otherwise.} \end{cases}$$ Hence, we obtain that if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$ is a Kandil's fuzzy bitopological space. Also, if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a Kandil's fuzzy bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)^r, (\mathcal{T}_2)^s)$ is a smooth bitopological space. DEFINITION 2.1 ([8]). Let (X, \mathcal{T}) be a smooth topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-closure is defined by $$\mathcal{T}\text{-Cl}(\mu, r) = \bigwedge \{ \rho \mid \mu \leq \rho, \mathcal{T}(\rho^c) \geq r \}$$ and the fuzzy r-interior $$\mathcal{T}$$ -Int $(\mu, r) = \bigvee \{ \rho \mid \mu \geq \rho, \mathcal{T}(\rho) \geq r \}.$ THEOREM 2.2 ([8]). For a fuzzy set μ of a smooth topological space (X, \mathcal{T}) and $r \in I_0$, we have: - (1) \mathcal{T} -Int $(\mu, r)^c = \mathcal{T}$ -Cl (μ^c, r) . - (2) $\mathcal{T}\text{-Cl}(\mu, r)^c = \mathcal{T}\text{-Int}(\mu^c, r)$. DEFINITION 2.3 ([7]). Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be - (1) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set if there is a \mathcal{T}_i -fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \mathcal{T}_i$ -Cl (ρ, s) , - (2) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed set if there is a \mathcal{T}_i -fuzzy r-closed set ρ in X such that \mathcal{T}_i -Int $(\rho, s) \leq \mu \leq \rho$. DEFINITION 2.4 ([7]). Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping from a smooth bitopological space X to another smooth bitopological space Y and $r,s \in I_0$. Then f is called a fuzzy pairwise (r,s)-continuous ((r,s)-open and (r,s)-closed, respectively) mapping if the induced mapping $f:(X,\mathcal{T}_1) \to (Y,\mathcal{U}_1)$ is a fuzzy r-continuous (r-open and r-closed, respectively) mapping and the induced mapping $f:(X,\mathcal{T}_2) \to (Y,\mathcal{U}_2)$ is a fuzzy s-continuous (s-open and s-closed, respectively) mapping. # 3. $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy (r, s)-preopen sets DEFINITION 3.1. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be - (1) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set if $\mu \leq \mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\mu, s), r)$, - (2) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preclosed set if \mathcal{T}_i -Cl $(\mathcal{T}_j$ -Int $(\mu, s), r) \leq \mu$. THEOREM 3.2. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then the following statements are equivalent: - (1) μ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set. - (2) μ^c is a $(\mathcal{T}_i, \mathcal{T}_i)$ -fuzzy (r, s)-preclosed set. PROOF. It follows from Theorem 2.2. THEOREM 3.3. (1) Any union of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen sets is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set. (2) Any intersection of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preclosed sets is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preclosed set. PROOF. (1) Let $\{\mu_k\}$ be a collection of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen sets. Then for each $k, \mu_k \leq \mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\mu_k, s), r)$. So $$\bigvee \mu_k \leq \bigvee \mathcal{T}_i \text{-} \text{Int}(\mathcal{T}_j \text{-} \text{Cl}(\mu_k, s), r) \leq \mathcal{T}_i \text{-} \text{Int}(\mathcal{T}_j \text{-} \text{Cl}(\bigvee \mu_k, s), r).$$ Thus $\bigvee \mu_k$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set. THEOREM 3.4. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. - (1) If μ is a \mathcal{T}_1 -fuzzy r-open set of (X, \mathcal{T}_1) , then μ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-preopen set of $(X, \mathcal{T}_1, \mathcal{T}_2)$. - (2) If μ is a \mathcal{T}_2 -fuzzy s-open set of (X, \mathcal{T}_2) , then μ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy (s, r)-preopen set of $(X, \mathcal{T}_1, \mathcal{T}_2)$. PROOF. (1) Let μ be a \mathcal{T}_1 -fuzzy r-open set of (X, \mathcal{T}_1) . Then $\mu = \mathcal{T}_1$ -Int (μ, r) . Clearly, we have $\mu \leq \mathcal{T}_2$ -Cl (μ, s) and hence $$\mu = \mathcal{T}_1\text{-Int}(\mu, r) \leq \mathcal{T}_1\text{-Int}(\mathcal{T}_2\text{-Cl}(\mu, s), r).$$ Thus μ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-preopen set of $(X, \mathcal{T}_1, \mathcal{T}_2)$. (2) Similar to (1). $$\Box$$ But the converses in the above theorem need not be true which is shown by the following example. EXAMPLE 3.5. Let $X = \{x, y\}$ and μ_1, μ_2, μ_3 and μ_4 be fuzzy sets of X defined as $$\mu_1(x) = 0.2, \quad \mu_1(y) = 0.4;$$ $$\mu_2(x) = 0.6, \quad \mu_2(y) = 0.3;$$ $$\mu_3(x) = 0.2, \quad \mu_3(y) = 0.3;$$ and $$\mu_4(x) = 0.5, \quad \mu_4(y) = 0.2.$$ Define $\mathcal{T}_1:I^X\to I$ and $\mathcal{T}_2:I^X\to I$ by $$\mathcal{T}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise;} \end{cases}$$ and $$\mathcal{T}_2(\mu) = \left\{ egin{array}{ll} 1 & ext{if} & \mu = ilde{0}, ilde{1}, \ rac{1}{3} & ext{if} & \mu = \mu_2, \ 0 & ext{otherwise}. \end{array} ight.$$ Then clearly $(\mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopology on X. Note that $$\mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mu_3,\tfrac{1}{3}),\tfrac{1}{2})=\mathcal{T}_1\text{-}\mathrm{Int}(\mu_2^c,\tfrac{1}{2})=\mu_1\geq\mu_3.$$ Thus μ_3 is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy $(\frac{1}{2}, \frac{1}{3})$ -preopen set which is not a \mathcal{T}_1 -fuzzy $\frac{1}{2}$ -open set. Also we have $$\mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mu_4,\tfrac{1}{2}),\tfrac{1}{3})=\mathcal{T}_2\text{-}\mathrm{Int}(\mu_1^c,\tfrac{1}{3})=\mu_2\geq\mu_4.$$ Hence μ_4 is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy $(\frac{1}{3}, \frac{1}{2})$ -preopen set which is not a \mathcal{T}_2 -fuzzy $\frac{1}{3}$ -open set. REMARK 3.6. That (T_i, T_j) -fuzzy (r, s)-semiopen sets and (T_i, T_j) -fuzzy (r, s)-preopen sets are independent notions is shown by the following example. EXAMPLE 3.7. Let $X = \{x, y\}$ and $\mu_1, \mu_2, \mu_3, \mu_4, \mu_5$ and μ_6 be fuzzy sets of X defined as $$\mu_1(x) = 0.1, \quad \mu_1(y) = 0.7;$$ $\mu_2(x) = 0.8, \quad \mu_2(y) = 0.2;$ $\mu_3(x) = 0, \quad \mu_3(y) = 0.6;$ $\mu_4(x) = 0.1, \quad \mu_4(y) = 0.8;$ $\mu_5(x) = 0.5, \quad \mu_5(y) = 0.6;$ and $$\mu_6(x) = 0.9, \quad \mu_6(y) = 0.2.$$ Define $\mathcal{T}_1: I^X \to I$ and $\mathcal{T}_2: I^X \to I$ by $$\mathcal{T}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise;} \end{cases}$$ and $$\mathcal{T}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{3} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise.} \end{cases}$$ Then clearly $(\mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopology on X. The fuzzy set μ_3 is $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy $(\frac{1}{2}, \frac{1}{3})$ -preopen which is not $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy $(\frac{1}{2}, \frac{1}{3})$ -semiopen and μ_4 is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy $(\frac{1}{2}, \frac{1}{3})$ -semiopen set which is not a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy $(\frac{1}{2}, \frac{1}{3})$ -preopen set. Also μ_5 is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy $(\frac{1}{3}, \frac{1}{2})$ -preopen set which is not a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy $(\frac{1}{3}, \frac{1}{2})$ -semiopen set and μ_6 is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy $(\frac{1}{3}, \frac{1}{2})$ -preopen set. ## 4. Fuzzy pairwise (r, s)-precontinuous mappings DEFINITION 4.1. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a smooth bitopological space X to another smooth bitopological space Y and $r, s \in I_0$. Then f is called (1) a fuzzy pairwise (r, s)-precontinuous mapping if $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-preopen set of X for each \mathcal{U}_1 -fuzzy r-open set μ of Y and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy (s, r)-preopen set of X for each \mathcal{U}_2 -fuzzy s-open set ν of Y, - (2) a fuzzy pairwise (r, s)-preopen mapping if $f(\rho)$ is a $(\mathcal{U}_1, \mathcal{U}_2)$ -fuzzy (r, s)-preopen set of Y for each \mathcal{T}_1 -fuzzy r-open set ρ of X and $f(\lambda)$ is a $(\mathcal{U}_2, \mathcal{U}_1)$ -fuzzy (s, r)-preopen set of Y for each \mathcal{T}_2 -fuzzy s-open set λ of X, - (3) a fuzzy pairwise (r, s)-preclosed mapping if $f(\rho)$ is a $(\mathcal{U}_1, \mathcal{U}_2)$ fuzzy (r, s)-preclosed set of Y for each \mathcal{T}_1 -fuzzy r-closed set ρ of X and $f(\lambda)$ is a $(\mathcal{U}_2, \mathcal{U}_1)$ -fuzzy (s, r)-preclosed set of Y for each \mathcal{T}_2 -fuzzy s-closed set λ of X. Remark 4.2. It is obvious that every fuzzy pairwise (r, s)-continuous mapping is also a fuzzy pairwise (r, s)-precontinuous mapping. But the converse need not be true which is shown by the following example. Example 4.3. (1) A fuzzy pairwise (r, s)-precontinuous mapping need not be a fuzzy pairwise (r, s)-continuous mapping. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a smooth bitopological space as described in Example 3.5. Define $\mathcal{U}_1: I^X \to I$ and $\mathcal{U}_2: I^X \to I$ by $$\mathcal{U}_1(\mu) = \left\{ egin{array}{ll} 1 & ext{if} & \mu = ilde{0}, ilde{1}, \ rac{1}{2} & ext{if} & \mu = \mu_3, \ 0 & ext{otherwise}; \end{array} ight.$$ and $$\mathcal{U}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ 0 & \text{otherwise.} \end{cases}$$ Then clearly $(\mathcal{U}_1, \mathcal{U}_2)$ is a smooth bitopology on X. Consider the mapping $f: (X, \mathcal{T}_1, \mathcal{T}_2) \to (X, \mathcal{U}_1, \mathcal{U}_2)$ defined by f(x) = x and f(y) = y. Then f is a fuzzy pairwise $(\frac{1}{2}, \frac{1}{3})$ -precontinuous mapping which is not a fuzzy pairwise $(\frac{1}{2}, \frac{1}{3})$ -continuous mapping. (2) A fuzzy pairwise (r, s)-preopen mapping need not be a fuzzy pairwise (r, s)-open mapping. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(X, \mathcal{U}_1, \mathcal{U}_2)$ be smooth bitopological spaces as described in (1). Consider the mapping $f: (X, \mathcal{U}_1, \mathcal{U}_2) \to (X, \mathcal{T}_1, \mathcal{T}_2)$ defined by f(x) = x and f(y) = y. Then f is a fuzzy pairwise $(\frac{1}{2}, \frac{1}{3})$ -preopen mapping which is not a fuzzy pairwise $(\frac{1}{2}, \frac{1}{3})$ -open mapping. (3) A fuzzy pairwise (r, s)-preclosed mapping need not be a fuzzy pairwise (r, s)-closed mapping. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(X, \mathcal{U}_1, \mathcal{U}_2)$ be smooth bitopological spaces as described in (1). Consider the mapping $f: (X, \mathcal{U}_1, \mathcal{U}_2) \to (X, \mathcal{T}_1, \mathcal{T}_2)$ defined by f(x) = x and f(y) = y. Then f is a fuzzy pairwise $(\frac{1}{2}, \frac{1}{3})$ -preclosed mapping which is not a fuzzy pairwise $(\frac{1}{2}, \frac{1}{3})$ -closed mapping. THEOREM 4.4. Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a mapping and $r,s\in I_0$. Then the following statements are equivalent: - (1) f is a fuzzy pairwise (r, s)-precontinuous mapping. - (2) $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-preclosed set of X for each \mathcal{U}_1 fuzzy r-closed set μ of Y and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy (s, r)preclosed set of X for each \mathcal{U}_2 -fuzzy s-closed set ν of Y. - (3) For each fuzzy set μ of Y, $$\mathcal{T}_1\text{-Cl}(\mathcal{T}_2\text{-Int}(f^{-1}(\mu), s), r) \le f^{-1}(\mathcal{U}_1\text{-Cl}(\mu, r))$$ and $$\mathcal{T}_2\text{-Cl}(\mathcal{T}_1\text{-Int}(f^{-1}(\mu), r), s) \le f^{-1}(\mathcal{U}_2\text{-Cl}(\mu, s)).$$ (4) For each fuzzy set ρ of X, $$f(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(\rho,s),r) \leq \mathcal{U}_1\text{-}\mathrm{Cl}(f(\rho),r)$$ and $$f(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(\rho,r),s) \leq \mathcal{U}_2\text{-}\mathrm{Cl}(f(\rho),s).$$ - PROOF. (1) \Rightarrow (2) Let μ be any \mathcal{U}_1 -fuzzy r-closed set and ν any \mathcal{U}_2 -fuzzy s-closed set of Y. Then μ^c is a \mathcal{U}_1 -fuzzy r-open set and ν^c is a \mathcal{U}_2 -fuzzy s-open set of Y. Since f is a fuzzy pairwise (r,s)-precontinuous mapping, $f^{-1}(\mu^c)$ is a $(\mathcal{T}_1,\mathcal{T}_2)$ -fuzzy (r,s)-preopen set and $f^{-1}(\nu^c)$ is a $(\mathcal{T}_2,\mathcal{T}_1)$ -fuzzy (s,r)-preopen set of X. But $f^{-1}(\mu^c) = f^{-1}(\mu)^c$ and $f^{-1}(\nu^c) = f^{-1}(\nu)^c$. By Theorem 3.2, $f^{-1}(\mu)$ is a $(\mathcal{T}_1,\mathcal{T}_2)$ -fuzzy (r,s)-preclosed set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2,\mathcal{T}_1)$ -fuzzy (s,r)-preclosed set of X. - (2) \Rightarrow (1) Let μ be any \mathcal{U}_1 -fuzzy r-open set and ν any \mathcal{U}_2 -fuzzy s-open set of Y. Then μ^c is a \mathcal{U}_1 -fuzzy r-closed set and ν^c is a \mathcal{U}_2 -fuzzy s-closed set of Y. By (2), $f^{-1}(\mu^c)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-preclosed set and $f^{-1}(\nu^c)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy (s, r)-preclosed set of X. But $f^{-1}(\mu^c) = f^{-1}(\mu)^c$ and $f^{-1}(\nu^c) = f^{-1}(\nu)^c$. By Theorem 3.2, $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-preopen set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy (s, r)-preopen set of X. Thus f is a fuzzy pairwise (r, s)-precontinuous mapping. - (2) \Rightarrow (3) Let μ be any fuzzy set of Y. Then \mathcal{U}_1 -Cl(μ , r) is a \mathcal{U}_1 -fuzzy r-closed set and \mathcal{U}_2 -Cl(μ , s) is a \mathcal{U}_2 -fuzzy s-closed set of Y. By (2), $f^{-1}(\mathcal{U}_1\text{-Cl}(\mu,r))$ is $(\mathcal{T}_1,\mathcal{T}_2)$ -fuzzy (r,s)-preclosed and $f^{-1}(\mathcal{U}_2\text{-Cl}(\mu,s))$ is $(\mathcal{T}_2,\mathcal{T}_1)$ -fuzzy (s,r)-preclosed of X. Thus $$f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(\mu, r)) \ge \mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(\mu, r)), s), r)$$ $$\ge \mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}(\mu), s), r)$$ and $$f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(\mu, s)) \ge \mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(\mu, s)), r), s)$$ $$\ge \mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\mu), r), s).$$ $(3) \Rightarrow (4)$ Let ρ be any fuzzy set of X. Then $f(\rho)$ is a fuzzy set of Y. By (3), $$f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(f(\rho), r)) \ge \mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}f(\rho), s), r)$$ $$\ge \mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(\rho, s), r)$$ and $$f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(f(\rho),s)) \ge \mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}f(\rho),r),s)$$ $$\ge \mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(\rho,r),s).$$ Hence $$\mathcal{U}_1\text{-}\mathrm{Cl}(f(\rho),r) \geq ff^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(f(\rho),r) \geq f(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(\rho,s),r)$$ and $$\mathcal{U}_2\text{-Cl}(f(\rho), s) \ge ff^{-1}(\mathcal{U}_2\text{-Cl}(f(\rho), s) \ge f(\mathcal{T}_2\text{-Cl}(\mathcal{T}_1\text{-Int}(\rho, r), s).$$ (4) \Rightarrow (2) Let μ be any \mathcal{U}_1 -fuzzy r-closed set and ν any \mathcal{U}_2 -fuzzy s-closed set of Y. Then $f^{-1}(\mu)$ and $f^{-1}(\nu)$ are fuzzy sets of X. By (4), $$f(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}(\mu),s),r)) \leq \mathcal{U}_1\text{-}\mathrm{Cl}(ff^{-1}(\mu),r)$$ $$< \mathcal{U}_1\text{-}\mathrm{Cl}(\mu,r) = \mu$$ and $$f(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\nu),r),s)) \leq \mathcal{U}_2\text{-}\mathrm{Cl}(ff^{-1}(\nu),s)$$ $$\leq \mathcal{U}_2\text{-}\mathrm{Cl}(\nu,s) = \nu.$$ So $$\mathcal{T}_1\text{-Cl}(\mathcal{T}_2\text{-Int}(f^{-1}(\mu), s), r) \le f^{-1}f(\mathcal{T}_1\text{-Cl}(\mathcal{T}_2\text{-Int}(f^{-1}(\mu), s), r))$$ $\le f^{-1}(\mu)$ and $$\mathcal{T}_2\text{-Cl}(\mathcal{T}_1\text{-Int}(f^{-1}(\nu), r), s) \le f^{-1}f(\mathcal{T}_2\text{-Cl}(\mathcal{T}_1\text{-Int}(f^{-1}(\nu), r), s)$$ $\le f^{-1}(\nu).$ Therefore $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy (r, s)-preclosed set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy (s, r)-preclosed set of X. In general, it need not be true that if f and g are fuzzy pairwise (r, s)-precontinuous ((r, s)-precopen and (r, s)-preclosed, respectively) then so is $g \circ f$. But we have the following theorem. THEOREM 4.5. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$, $(Y, \mathcal{U}_1, \mathcal{U}_2)$ and $(Z, \mathcal{V}_1, \mathcal{V}_2)$ be smooth bitopological spaces and let $f: X \to Y$ and $g: Y \to Z$ be mappings and $r, s \in I_0$. Then the following statements are true. - (1) If f is fuzzy pairwise (r, s)-precontinuous and g is fuzzy pairwise (r, s)-continuous then $g \circ f$ is fuzzy pairwise (r, s)-precontinuous. - (2) If f is fuzzy pairwise (r, s)-open and g is fuzzy pairwise (r, s)-preopen then $g \circ f$ is fuzzy pairwise (r, s)-preopen. - (3) If f is fuzzy pairwise (r, s)-closed and g is fuzzy pairwise (r, s)-preclosed then $g \circ f$ is fuzzy pairwise (r, s)-preclosed. PROOF. Straightforward. The next two theorems show that a fuzzy pairwise precontinuous mapping is a special case of a fuzzy pairwise (r, s)-precontinuous mapping. THEOREM 4.6. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(Y, \mathcal{U}_1, \mathcal{U}_2)$ be smooth bitopological spaces and let $r, s \in I_0$. Then $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ is fuzzy pairwise (r, s)-precontinuous if and only if $f : (X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s) \to (Y, (\mathcal{U}_1)_r, (\mathcal{U}_2)_s)$ is fuzzy pairwise precontinuous. PROOF. Let $\mu \in (\mathcal{U}_1)_r$ and $\nu \in (\mathcal{U}_2)_s$. Then $\mathcal{U}_1(\mu) \geq r$ and $\mathcal{U}_2(\nu) \geq s$ and hence μ is a \mathcal{U}_1 -fuzzy r-open set and ν is a \mathcal{U}_2 -fuzzy s-open set of Y. Since $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ is a fuzzy pairwise (r,s)-precontinuous mapping, $f^{-1}(\mu)$ is a $(\mathcal{T}_1,\mathcal{T}_2)$ -fuzzy (r,s)-preopen set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2,\mathcal{T}_1)$ -fuzzy (s,r)-preopen set of $(X,\mathcal{T}_1,\mathcal{T}_2)$. So $f^{-1}(\mu)$ is $((\mathcal{T}_1)_r,(\mathcal{T}_2)_s)$ -fuzzy preopen and $f^{-1}(\nu)$ is $((\mathcal{T}_2)_s,(\mathcal{T}_1)_r)$ -fuzzy preopen of $(X,(\mathcal{T}_1)_r,(\mathcal{T}_2)_s)$. Thus $f:(X,(\mathcal{T}_1)_r,(\mathcal{T}_2)_s)\to (Y,(\mathcal{U}_1)_r,(\mathcal{U}_2)_s)$ is a fuzzy pairwise precontinuous mapping. Conversely, let μ be any \mathcal{U}_1 -fuzzy r-open set and ν any \mathcal{U}_2 -fuzzy s-open set of $(Y,\mathcal{U}_1,\mathcal{U}_2)$. Then $\mathcal{U}_1(\mu) \geq r$ and $\mathcal{U}_2(\nu) \geq s$. So $\mu \in (\mathcal{U}_1)_r$ and $\nu \in (\mathcal{U}_2)_s$. Since $f: (X,(\mathcal{T}_1)_r,(\mathcal{T}_2)_s) \to (Y,(\mathcal{U}_1)_r,(\mathcal{U}_2)_s)$ is a fuzzy pairwise precontinuous mapping, $f^{-1}(\mu)$ is a $((\mathcal{T}_1)_r,(\mathcal{T}_2)_s)$ -fuzzy preopen set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2)_s,(\mathcal{T}_1)_r$ -fuzzy preopen set of $(X,(\mathcal{T}_1)_r,(\mathcal{T}_2)_s)$. So $f^{-1}(\mu)$ is a $(\mathcal{T}_1,\mathcal{T}_2)$ -fuzzy (r,s)-preopen set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2,\mathcal{T}_1)$ -fuzzy (s,r)-preopen set of $(X,\mathcal{T}_1,\mathcal{T}_2)$. Thus $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ is a fuzzy pairwise (r,s)-precontinuous mapping. THEOREM 4.7. Let (X, T_1, T_2) and (Y, U_1, U_2) be Kandil's fuzzy bitopological spaces and let $r, s \in I_0$. Then $f: (X, T_1, T_2) \to (Y, U_1, U_2)$ is a fuzzy pairwise precontinuous mapping if and only if $f: (X, (T_1)^r, (T_2)^s) \to (Y, (U_1)^r, (U_2)^s)$ is a fuzzy pairwise (r, s)-precontinuous mapping. PROOF. Let μ be a $(U_1)^r$ -fuzzy r-open set and ν a $(U_2)^s$ -fuzzy s-open set of $(Y,(U_1)^r,(U_2)^s)$. Then $(U_1)^r(\mu) \geq r$ and $(U_2)^s(\nu) \geq s$ and hence $\mu \in U_1$ and $\nu \in U_2$. Since $f:(X,T_1,T_2) \to (Y,U_1,U_2)$ is a fuzzy pairwise precontinuous mapping, $f^{-1}(\mu)$ is a (T_1,T_2) -fuzzy preopen set and $f^{-1}(\nu)$ is a (T_2,T_1) -fuzzy preopen set of (X,T_1,T_2) . So $f^{-1}(\mu)$ is a $((T_1)^r,(T_2)^s)$ -fuzzy (r,s)-preopen set and $f^{-1}(\nu)$ is a $((T_2)^s,(T_1)^r)$ -fuzzy (s,r)-preopen set of $(X,(T_1)^r,(T_2)^s)$. Thus $f:(X,(T_1)^r,(T_2)^s) \to (Y,(U_1)^r,(U_2)^s)$ is a fuzzy pairwise (r,s)-precontinuous mapping. Conversely, let $\mu \in U_1$ and $\nu \in U_2$. Then $(U_1)^r(\mu) \geq r$ and $(U_2)^s(\nu) \geq s$, and hence μ is a $(U_1)^r$ -fuzzy r-open set and ν is a $(U_2)^s$ -fuzzy s-open set of Y. Since $f: (X, (T_1)^r, (T_2)^s) \to (Y, (U_1)^r, (U_2)^s)$ is a fuzzy pairwise (r, s)-precontinuous mapping, $f^{-1}(\mu)$ is a $((T_1)^r, (T_2)^s)$ -fuzzy (r, s)-preopen set and $f^{-1}(\nu)$ is a $((T_2)^s, (T_1)^r)$ -fuzzy (s, r)-preopen set of $(X, (T_1)^r, (T_2)^s)$. So $f^{-1}(\mu)$ is a (T_1, T_2) -fuzzy preopen set and $f^{-1}(\nu)$ is a (T_2, T_1) -fuzzy preopen set of (X, T_1, T_2) . Thus $f: (X, T_1, T_2) \to (Y, U_1, U_2)$ is a fuzzy pairwise precontinuous mapping. 532 #### References - [1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32. - [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. - [3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207–212. - [4] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness : fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237–242. - [5] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79-82. - [6] A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin 63 (1989), 45–66. - [7] E. P. Lee, Y. B. Im and H. Han, Semiopen sets on smooth bitopological spaces, Far East J. Math. Sci. 3 (2001), 493-521. - [8] S. J. Lee and E. P. Lee, Fuzzy r-preopen sets and fuzzy r-precontinuous maps, Bull. Korean Math. Soc. 36 (1999), no. 1, 91-108. - [9] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371–375. - [10] S. Sampath Kumar, Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitopological spaces, Fuzzy Sets and Systems 64 (1994), 421–426. - [11] _____, On fuzzy pairwise α-continuity and fuzzy pairwise pre-continuity, Fuzzy Sets and Systems **62** (1994), 231–238. - [12] T. H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal. Appl 132 (1988), 356–364. - [13] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. Department of Mathematics Seonam University Namwon 590-711, Korea *E-mail*: eplee@seonam.ac.kr