JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

Database Construction for Design of the Components Software
by Using an Incremental Update Propagation

Am-Suk Oh and Oh-Hyun Kwon

ABSTRACT

Engineering design applications require the support of long transactions in cooperative environments.
The problem of the existing copy/update/merge approaches is that the partial effects of a committed
transaction may be not part of the merged version. This paper introduces a new cooperative transaction
model, which allows updates to be progressively notified or propagated into other transactions accessing
the same object. To support incremental update propagation and notification, we use the term dynamic
dependency to define the intertransaction dependency relationships among all the objects checked out
from the public database. Consistency in multiple copies of the same object is achieved by a two—phase
delta-merge protocol. Our model provides a synchronization of cooperative updates performed in several

workspaces without using locking mechanisms.

Key words: Transaction Model, Update Propagation, Components Software

1. INTRODUCTION

ngineering design applications such as CAD,
E software design, GIS, etc., require the sup-
port of interactive transactions of long duration in
cooperative environments. With long transactions,
a group of users works cooperatively for a long
time on the same object. What is the most im-
portant in an interactive long transaction system
is the exposure of uncommitted data and the ef-
ficiency and satisfaction of the user.

Long transactions must allow a group of users
to work in separate locations without waiting for
each other, since it is inefficient to force trans-
actions to wait while other transactions make

access to the same object. Conventional concur-

“This research was supported by Busan Techno-Park
e-biz Transformation Project for Korea Footwear
Industry”

*Am-Suk Oh is with the Dept. of Multimedia Engi-
neering, Tongmyoung Univ. of Information Tech-
onology, 535, Yongdang~dong, Nam-gu Busan, 608-711,
Korea. E-mail @ asoh@tmic.titackr

* Oh-Hyun Kwon is with the Dept. of Computer Engi-
neering, Tongmyoung Univ. of Information Tech-
onology, 535, Yongdang-dong, Nam-gu Busan, 608-711,
Korea. E-mail @ ohkwon@tmic.tit.ackr

rency control mechanisms thus are not suitable for
cooperative applications, because of their too re-
stricted synchronization of concurrent accesses.

Up to now, most solutions for long transactions
have adopted the copy/update/merge approaches.
In those existing version-merging methods, ver-
sions are independently derived from the same
object in separate workspaces. After long trans—
actions are terminated, the versions are merged
together. These approaches, however, do not con~
sider the problem of relaxed atomicity. Atomicity
of a transaction requires that a merged version
must contain either all the effects of a transaction
or none of the effects of the transaction. Therefore,
the problem of the existing copy/update/merge
approaches is that the partial effects of the com-
mitted transaction may be not part of the merged
version. A randomly selected partial effect of the
committed transaction for making a final merged
version may not be acceptable to concurrent
engineers.

This paper introduces a new cooperative trans-
action model which supports the cooperative work
of a group of users on the same object. In our
model, each user has his own workspace that is

584 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

not isolated from other workspaces. This is a
major difference from the traditional transaction
model. Our model allows transactions to pro-
gressively propagate their updates in other trans-
actions accessing the same object. This mech-
anism provides cooperative updates of the shared
object, in which each user may update his own
local data in isolation, but also may exchange in-
complete, yet stable, updates with other work-
spaces prior to transaction commit.

What is the most important for cooperative work
is to maintain the consistency of overlapping data
from multiple workspaces. We assume that the
cooperative work environment consists of a public
database and one or more workspaces. The con-
sistency control in multiple copies of the same
object is not performed in the public database, but
in the workspaces. Our model does not use the
version control method to support cooperative
updating on the same object.

Our goals for cooperative work consist of the

followings:

(1) unification of concurrent work that may be
acceptable to the various concurrent engineers,

(2) updates in isolation at a workspace,

(3) incremental propagation in and/or notifica-
tion of updates in other transactions accessing the
same object, before each transaction is terminated.

We approach this problem by defining the con-
cept of dynamic relationship, which represents the
temporary dependencies among the copies being
updated in several workspaces. We use the term
dynamic dependency to categorize update prop—
agation and notification. In case that the same
object in the public database is copied by two or
more workspaces, dynamic dependencies represent
which copies are dependent upon which other
copies. We don't use the version—-merging ap-
proach to resolve update conflict because long
merging times lead to longer response time.
Instead, we propose a two-phase delta-merge
protocol in which each user at a workspace

independently makes modifications, with coordi~
nation among transactions being achieved by the
incremental merging mechanism. This protocol
handles the problem of update conflict by direct
coordination between two or more workspaces.

2. A WORKSPACE TRANSACTION
MODEL

In this section, we propose a new cooperative
transaction model that supports incremental update
propagation for synchronization of concurrent
work. A workspace transaction is any unit of work
that is performed independently at any workspace.
A workspace transaction is an interactive trans-
action consisting of a set of subtasks. Once a
workspace transaction copies an object to in its
own workspace from the public database, other
transactions may also check it out. We assume that
there is no locking for workspace transactions,
even if they have shared the same object with
another transactions.

The cooperative workspace transactioﬁ implies
that a transaction should not be forced to wait until
other transactions accessing the same object are
completely terminated. Cooperative workspace
transactions support concurrent updates. In other
words, each cooperative transaction updates its
own data in isolation. However, we don’t use
versions for resolving update conflict. Instead,
resolution of update conflict is achieved by in-
cremental propagation among workspace trans-
actions. To support incremental update propaga-
tion, the workspace transaction management must
be enabled to propagate the update of the contents
of a workspace directly in other transactions

A workspace transaction involves a set of
transaction operations. Each workspace is not
shared with any other transactions. A workspace
transaction can read an object from the public
database, update it at its own workspace, and
check in the updated object to the public database.

Fig. 1 is an example of workspace transactions.

DATABASE CONSTRUCTION FOR DESIGN OF THE COMPONENTS SOFTWARE BY USING AN INCREMENTAL UPDATE PROPAGATION 585

Workspace A
Transaction T1:

Workspace B
Transaction T2:

Interactive Transaction Interactive Transaction
read(M2) /*check-out*/ read(M3)
update(M2) update(M3)
read(M4) :
update(M4) °
checkpoint-commit(M4p - - - »

. propagatipn N

.]
commit(M2,M4) commit(M3,M4)
end /*check-in*/ end

Fig. 1. A Workspace Transaction Example

A workspace transaction T1 updates two pro-
grams, M2 and M4, at workspace A. The other
transaction T2 edits M3 and M4 at workspace B.
Here we assume that M2 is decomposed into M4
and M5, where M4 is also used by M3. Let '"Ti/X’
be the transaction Ti working at the workspace X.
For example, T1/A is a transaction T1 at the
workspace A. T1/A checkouts M2 and M4 from
the public database by a check-out operation.
When TI1/A updates M4, the update may be
propagated into the workspace B by processing the
operation checkpoint-commit(M4’),

A checkout operation copies an object from the
public database to a workspace. The read(M)
operation, shown in Fig. 1, corresponds to the
checkout operation. The converse of the checkout
operation is the checkin operation. The operation
commit in Fig. 1 corresponds to the checkin op-
eration. It copies back the updated object to the
public database.

Since a workspace transaction requires coop-—
eration with concurrent engineers, it is desirable
for other transactions to be forced to read its partial
result, which is uncommitted data, before the
transaction is completely finished. The operation
checkpoint-commit is used to save the in-
termediate changes of a transaction to its own
workspace memory, while the transaction con-
tinues to perform its work. The idea of this paper
is to use the operation checkpoint-commit for

supporting incremental update propagation and

notification. On receiving the checkpoint-commit
operation, the transaction management system
should propagate the intermediate changes
checkpoint-committed from the transaction in
other transactions. We assume that the operation
checkpoint-commit can be issued by an user in an
interactive transaction.

In the conventional versioning mechanism, a
merge—conflict may occur because the versions
derived from the same object are merged together,
after transactions are finished. The problem of the
batch merging method is that the partial effects of
a transaction chosen for making the merged ver—
sion may not be acceptable to the cooperative
users. Therefore, we have to be able to make a
single object version that is acceptable to all users.

Fig. 2 shows that the conventional version-
merge method and checkpoint-commit method
proposed in this paper. In Fig. 2 (a), Ma'(final
version of T1) and Mb'(final version of T2) should
be merged and that is serious overhead. On the
other hand, in Fig. 2 (b), the final version of T1
and T2 is same. Thus, there is no more overhead

to merge version.

3. TWO-PHASE DELTA-MERGE PRO-
TOCOL

workspece B workspace A

workspace A
s innssction T2 trunsaction T1

aauction T1

(a)Version-merge method (b)checkpoint-comymit method

Fig. 2. Version-Merge and Checkpoint-Commit

To support the incremental merging of different
updates in the same master copy, we propose a
two-phase delta-merge protocol, which is similar
to the two-phase commit protocol. The two-phase

586 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

delta—merge protocol is used whenever a given
transaction shares the same object copied from the

public database with several transactions.

3.1 Delta Propagation

When the checkout operation is performed, an
object in the public database is copied to a specific
workspace. The data set of the workspace consists
of both an initial master copy and an initial empty
delta. The master copy is the entire copy of the
object checked out from the public database. In
addition, we keep the delta (which is the difference
of the modified object from the master copy). Thus,
if an object participating in a duplicated rela-
tionship is updated, the delta is only propagated in
other workspaces when the update is checkpoint—
committed from a given transaction. We use dy-
namic dependencies for propagating delta in other
relevant objects.

3.2 Resolution of Update Conflict

If an interactive transaction issues the operation
checkpoint-commit to broadcast its partial up—
dates, then the checkpoint-committed updates
must be propagated in all the other transactions
accessing the same object. Here is the way it
works: We define a producer as a transaction
which checkpoint-commits its partial updates, and
participants as other transactions which access
the same object. Since any transaction can become
a producer, a producer is floating, i. e., not fixed.
That checkpoint-commit is handled by a system
component called coordinator.

On receiving the checkpoint-commit request,
the coordinator performs the following two-phase

process:

1. It forces all participants to write the delta log
propagated from the producer into their own
physical log. If the forced writing is successful,
each participant replies "accept” or "reject”.

2. When the coordinator has received replies

from all participants, the coordinator informs each
participant of its decisions. If each participant
receives the "OK” message from the producer, the
delta propagated from the producer is merged
automatically or manually with the participant’s
delta.

This protocol notifies or propagates the
checkpoint-committed data of an interactive
transaction into other workspaces by using dy-
namic dependencies. In the case of logical rela-
tionships, it is sufficient to send the change no-
tification to other workspaces. However, if the
dynamic dependency is duplicated, the update
should be propagated, and be acknowledged by all
relevant workspaces. For simplicity, we will only
consider the problem of update propagation.

Fig. 3 shows the two-phase delta-merge pro-
tocol for incremental merging of different updates
of the same object. The operation checkpoint-
commit issued by an interactive transaction ini-
tiates the two-phase delta-merge protocol. There
are two kinds of internal operations for im-
plementing the checkpoint-commit. coordinator
operations, and participant operations. The coor-
dinator operations involve X-delta-propagation,
cp-committed (checkpoint-committed) and cp-

rejected(checkpoint-rejected), etc.

* X—delta-propagation is the first phase op—
eration that broadcasts delta into other trans-
actions accessing the same master copy.

» cp—committed is the second phase operation.
The coordinator receives replies from all par-
ticipants and informs each participant of it's
decision, "cp—committed”. If each participant re-
ceived the message "cp-committed”, the delta of
individual participant is merged with the delta
propagated from the producer.

« cp-rejected is also second phase operation.
The operation cp-rejected informs each participant
of "rollback” because one or more of all the
participants would reject the delta propagation. If
the producer receives the message ‘cp-rejected’

DATABASE CONSTRUCTION FOR DESIGN OF THE COMPONENTS SOFTWARE BY USING AN INCREMENTAL UPDATE PROPAGATION 587
Transaction T1 ' Transaction T2 : Transaction T3 Transaction Tt ' Transaction T2 ! Transaction T3
(producer) ' (participant articipant (producer) ! articipant) ! (participant)
transaction | producer | participant | transaction, participant [transaction transaction | producer | participant] transaction, participant | transaction
operation operations |, operations | operation , operations | operation operation operations , operations | operation , operations | operation
] ' " l
t Lread(Ml) X read(M1)! read(M1) t 1 read(M1) ! read(M1)! read(M1)
' : ' : ' : ' :
t+1 1 update(M1) ! . ! . t+1 1 update(M1) [. ' .
1 ! 1
t+2 1 checkpoint-commit(M1) : : 1+2 + checkpoint-commit(M1) : :
] 1] 1
| A-delta ! e ¢ | A-delta ' s :
3 propagation(M1). ¢ _ : : : L& propagation(M1). L _ : : :
il ® Tl *
4+ (wait) M receive A-delta ™ = ~ &receive A-delta SR S (wait) Mreceive A-delta ~ ™ - Wgeceive A-delta
. 1 check A-delta ! check A-delta . + check A-delta ! check A-delta
f '
wst ' 1, accept _ ! -accept +5 ' 1, accept _ .i-reject
1] s -— i P -
\ o ke X , V. >a- - X
w6t cp—commnwd(Mlj, QV%"Z , (wait) w6t cp-rejected(M1) ., Ewglll) , (res.umc)
T?n!rge B—:ie—lt; Tt "mgrge C-delta 1] : ;s ‘m, k A-delt : X
n - rolll
t+7 (rc?ume) | withoA-delta : i Adelta t+7 ro'back A-delta . roliback A-de a: :
] 1 1)
8+ ' (resume) ' (resume) +8 4+ : ') ' :
A ! ! ! v ') '
1 ' v ' v ' v ' v
' '
time . ' time X '
! ¢ 1)

(a) when the delta propagation is accepted

(b) when the delta propagation is rejected

Fig. 3 Coordination Between a Producer and a Participant

from the coordinator, the producer must update its
uncommitted data again.

The participant operations involve receive-
delta, check-delta, merge X-delta with Y-delta,
accept/reject, etc.,

* receive—delta is an operation that makes a
copy of the delta received from the producer at the
receiver's workspace.

» check-delta is an operation that asks each
user to accept or reject the propagated delta.

* merge X—deltawith Y-delta is an operation
that merges the receiver's delta with the delta

propagated from the producer.

In this paper, it is managed by communication
between the public process and the client process
or among client processes that the two-phase
delta-merge protocol for incremental merging of
different updates of the same object. Thus, actions
which each process should take are as follows:

m public process:

(1) Receives request of a list of related work—
space from the producer client process

(2) Notifies a list of related workspace based on
the dynamic dependencies to producer client

process

m producer client process:

(1) Requests a list of related workspace from
the public process.

(2) Receives a list of related workspace from the
public process and propagates delta to participants
based on it.

(3) Waits "accept” or "reject”.

(4) If a producer(T1) has obtained "accept” from
all participants(T2, T3), then T1 transfers message
"pre-committed” to T2, T3.

(5) If a producer(T1) has obtained "reject” from
one or more participants(T2, T3), then T1 transfers
message "pre-rejected” to T2, T3 and rollback its
own delta.

® participant client process:

(1) Receives and checks a delta from a producer
(T1) and notifies "accept” or "reject” to TI.

(2) If a participant(T2 or T3) will accept the
delta, then T2 or T3 transfers message "accept”
to T1 and waits message "pre-committed” from
T1.

At this time, If T2 and T3 have obtained
"pre-committed” from T1, then T2 and T3 merge
their own delta with T1’s delta. Otherwise(if
obtain "pre-rejected”), they rollback T1’s delta that
has been propagated.

588

(3) If a participant(T2 or T3) will reject the delta,
then T2 or T3 transfers message "reject” to T1 and
resumes.

We now show how the above protocol ensures
the synchronization of concurrent updates. Here
we address only the deferred check-out operation
and the concurrent pre-committed operation.

1. After an update propagation is completely
processed, a new participant can be checked out.
After T1 updates M1 and the update is propagated
into T2, a new participant T4 checks out of M1
at time t+6, as shown in Fig. 4(a). At the time t+6,
M1 is already updated by T1 and also the update
is propagated into M1 of T2. However, M1 of T4
is still not updated. Consequently, as soon as the
newly updated object M1 is checked out from the
public database, the update of T1 must be also
propagated in T4. This requires a deferred prop-
agation in a new transaction. To process the
deferred propagation, the coordinator should issue
the operation deferred delta propagation, which
will be sent to all new participants. If the new
participant accepts the deferred propagation, the
deferred pre-commit will be handled similarly to
the pre-committed. If the new participant rejects

JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

the deferred delta-propagation, the coordinator
issues the pre-rejected operation to the new
participant. The new participant, on receiving the
pre-rejected, becomes a secondary producer, for
handling the back propagation of the update of M1
in T1 and T2 to rollback the A-delta. The process
of ‘backed delta propagation’ is similar to ‘delta-
propagation’. The secondary producer differs from
the primary producer in that the primary producer
updates directly its own object, but the secondary
producer requests to roliback only updates of other
transactions.

2. When T1 and T5 issue the operation pre-
commit simultaneously, the delta propagation can
be accepted and/or rejected dependent upon the
decisions of two participants. When the coordinator
of T1 sends A-delta to TS at the same time as
the coordinator of T5 sends E-delta to T1, the delta
propagation from T1 and T5 can be simultaneously
processed without causing any problems, as shown
in fig. 5.

4. PROCESS MODELING

In this section we describe a process, which is

T
Transaction Tl (producer) \ on T

T T ' sou T2(partici | Traassction Té(mew ' Th(pew participanl)
tnasction coosdinator 1 participant_T2 tansaction T2 participent_T4 tanmction_Té trnnction coordinator ! participast T2 trantaction T2 ! participant T4 | transaction T4
openation operations ..,,‘;."‘"'.;,.. openation . it opention ~ aperstion oporaions | bperahons oponbons~ | bperstious s
' 1l A ! '
' ' [l . i R . ,
~ f . f 1+ i Adela ! b4 !
(28 TN e onM1) ! . ' ' oM, 1 H !
: Ppropag: 13 s M , w2 f o Arcceive Adelta (i '
N P v I R T A
' . . . 3 ' . ', scoept (resume) !
1 . , | wseoept (Fuone) . ' v P ! !
e ' ' 4 ' lorocommitiedM 1)’ (wity ' !
" ! |oCcomasocduty (it ') v’ S : ! .
. N ')
v \-* v v ' ust (rmume) ,\.._ﬂ..mu it ' red(M1)
s (resume) megeBdetn | %y ' ' with Adelbe .
" | with Andella \ . : N M ! .
ol A ! : w“l : -
\ ' W) rosd(M1) ;) deferred Adetta ' ' !
w J derred iy . . *) prepagtion(Mi) 1 . _ _) ‘
. ~F -
' propagatieaMb)-, . _ n N v v ity ' 1™ " = = ocive Adettn | (waiy
o ! (walt) ' 7Tt - wmeiveAddu | (wig i ! ! , cheek Al i
. » . .) chock Adelta ' ' ! ' ! revaa
' . ' ' y sd ' ! J—""—"]u‘)
9 i] ' ‘.- = (“T_) v ' P e) (it} v
. v io--- \) “10 pre-rejectedMD A " , v i
rred A it i R
o . Ty ') v ' - (wait) ' RN i
on : 1 i AN '",D‘,“. (-'-it) ! N - ::' ation_ 1
+ 1 T with Adelts” ot M a2 ' ‘(ﬁ'-'l'n‘)
)) ' ' h ol receive backed recetve backed '
oz ' ‘ \ 0 resuoc) A-delis \A-delia '
l v . , T 9 (rellback A-deits) 1 (rediback A-deits) ' 13
1B , v ' v time ['

(a) When the deferred delta propagation is ac-
cepted by a new participant

Fig. 4. The Process

(b) When the deferred delta propagation is re-
jected by a new participant

of Deferred Propagation

DATABASE CONSTRUCTION FOR DESIGN OF THE COMPONENTS SOFTWARE BY USING AN INCREMENTAL UPDATE PROPAGATION 589

Transaction T1(producer)

Ti

TS

T
' Transaction T5(producer)
T - -

'

operation

\
t 1 read(M1) v read(M1)
)
+14 update(M1) : update(M1)
\ .
1+2% pre-commit(M1 ' . pre-comumit(M1)
s . 4 (wait
wah B0 Saden o Edebe & Grai)
\ R !
wat ¥ receive E-delt? 1 Sreceive A-delta v
check E-delta v check A-delta
1+5 accepi(E-delta) |, _accept(Adlelta)
- r
(33 4 R RN
P
'
1+71 (resume) & ~ ~a, (Fesume)
\ i
v '
| v

Transaction T1| Transaction T Result

’ t A-delta
accept E<delta| accept A-delta :ﬁﬁ:ﬂ Edeita

accept E-delta| reject A-delta %ﬁ%&fllﬁm
L Adelta

reject E-delta |accept Adelia| 35580 (O T |
- - k A-delta
reject E-della | reject Aeta | RS A o8 2

<Reaction table for T1 and T5>

time

Fig. 5. The Process of Simultaneous Propagation
between two producers

the design model for the two-phase delta-merge
protocol. A public process is carried out in the
server and a client process is carried out in a client.
The public process manages the global state of a
module which is checked-out from the public
database and generates dynamic dependencies and
stores them into a dependency dictionary. The
client process manages the local state of a module

that a workspace transaction checks-out. The

public process and the client process manage the
state of a module by defining actions which should
be taken when a transaction operation is issued.
The transition of a module from one state to
another is controlled by communication between
the public process and the client process or among

client processes.

4.1 Public Process Modeling

Table 1 defines actions that the public process
should take when a transaction operation issues.

4.2 Client Process Modeling

Table 2 defines actions that the client process

should take when a transaction operation issues.

4.3 Algorithms

Algorithml, algorithm 2 and algorithm 3 repre—
sent communication among processes for two-—
phase delta-merge protocol. A message transfer/
receipt among processes is a sort of rendezvous
program. When a transaction operation is issued,
a communication among processes is done by the
issue of a internal operation predefined in a

process. A message transfer is reprersented by

Table 1. Actions of Public Process for State Transition

action_I1(check-out (wait U checked-out)) : generate dynamic dependencies and send a module
action_2(check-out (checked-out U checked-out)) : generate dynamic dependencies and send a module
action_3(checkpoint-commit(accepted) (checked-out U pre-committed)) : inform dependencies to producer
action_4(checkpoint-commit(rejected) (checked-out U checked-out)) : inform dependencies to producer
action_5(check—-in (checked-out U wait)) : delete dependencies

action_6(check-out (pre-committed U deferred)) : generate dynamic dependencies and send a module
. send deferred participant ID to producer

action_7(checkpoint-commit(accepted) (pre-committed U pre-committed)) : inform dependencies to
producer ')
action_8(checkpoint-commit(rejected) (pre-committed U pre—committed)) : inform dependencies to
producer

action_9(check—in (pre-committed U wait)) : delete dependencies

: update the module of the public DB

action_10(check-out (deferred U deferred)) : generate dynamic dependencies and send a module
action_11(checkpoint-commit(accepted) (deferred U pre-committed)) : no actions
action_i2(checkpoint-commit(rejected) (deferred U checked-out)) : no actions

590 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

Table 2. Actions of Client Process for State Transition

action_I1{(check-out (initial U checking-out)) :@ receive a module
action_2(update (checking-out U checking-out)) : no actions

action_3(checkpoint-commit(accepted) (checking-out U pre-committing))

<producer client process>

> request a list of related clients from the public process
: propagate delta to participants

> wait return signal

> send pre-committed to participants

<participant client process>

I receive and check propagated delta
. send accept signal to producer

I wait pre—committed from producer
> merge delta with propagated delta

action_4(checkpoint-commit(rejected) (checking-out U checking-out))

<producer client process>

. request a list of related clients from the public process
. propagate delta to participants

I wait return signal

. send pre-rejected to participants

> rollback delta

<participant client process>
> receive and check propagated delta
: send reject signal to producer

action_5(update (pre-committing U pre-committing)) : no actions

action_6(checkpoint-commit(accepted) (pre-committing U pre-committing))

<producer client process>

: request a list of related clients from the public process
: propagate delta to participants

> wait return signal

. send pre-commiltted to participants

<participant client process>

. receive and check propagated delta
: send accept signal to producer

> wait pre-committed from producer
: merge delta with propagated delta

action_7(checkpoint-commit(rejected) (pre-committing U pre-committing))

<producer client process>

> request a list of related clients from the public process
. propagate delta to participants

. wait return signal

. send pre-rejected to participants

: rollback delta

<participant client process>
> receive and check propagated delta
: send_reject signal to producer

action_8(check-in (pre-committing U initial))

<producer client process>

. request a list of related clients from the public process
. notify replace-master-copy to participants

. notify reset-delta to participants

<participant client process>

> replace master copy by master copy checked-in
; reset delta

DATABASE CONSTRUCTION FOR DESIGN OF THE COMPONENTS SOFTWARE BY USING AN INCREMENTAL UPDATE PROPAGATION 591

"send send-message to process” and message
receipt is represented by ’receive receive-

message from process”.

1 Algorithm PUBLIC PROCESS

2 begin

3 char current-state, next-state, transaction-op;

4 loop(true) {

5 wait signal

6 get client-ID, module and transaction operation;

7 fetch the module from public DB;

8 check the current-state of module;

9 while (the current-state is check-outed) {

10 if (transaction-op is "check-out’){

11 generates dynamic dependency;

12 send module to participant client—process,

13 set next-state to check-outed; }

14 if (transaction-op is 'checkpoint-commit'} {

15 receive request of related clients list from
producer client-process,

16 send related clients list to producer client-
process based on dynamic dependency;

17 if (delta is accepted)

18 set next-state to pre-committed;

19 else

20 set next-state to check-outed;

21 1

22 if (transaction-op is 'check-in’) {

23 deletes dynamic dependency

24 set next-state to wait: }

25 lend while;
2% Jend loop;
27 end

Algorithm 1. Public Process

Algorithm PRODUCER_CLIENT_PROCESS
begin .
char current-state, next-state, transaction-op;
loop(true) {
wait signal;
get updated module and transaction operation;
check the current-state of module;
while (the current-state is checking-out) {
if (transaction-op is "checkpoint-commit’) {
send request of related clients list to public process;
receive related clients list from public process.
send delta-propagation to all participants;
wait return signal from all participants.
if (all return signals are "accept”) {
send pre-committed message to all participants:

O 00 =1 OO U1 = WD

= b e b
[B - NO L T NG R)

16 set level to 1;

17 set next-state to pre-committing: |

18 else {

19 send pre-rejected message fo participants
accepting delta;

20 rollback delta;

21 set next-state to checking-out: }

22 tend if;

23 Jend while;
24 tend loop;
25 end

Algorithm 2. Producer client process

1 Algorithm PARTICIPANT_CLIENT_PROCESS

2 begin

3 char current-state, next-state, transaction-op:

4 loop(true) {

5 wait signal:

6 receive delta-propagation from producer client-process;

7 check delta;

8 if (participant accepts delta) {

9 send accept signal to producer client-process,

10 wait pre-committed message from producer client
-process;

11 if {(receive “pre-committed” from producer
client-process) {

12 merge own delta with delta propagated from producer;

13 set level to 1

14 set next-state to pre-committing: }

15 else {

16 rollback delta;

17 set next-state to checking-out: }

18 }

19 else {

20 send reject signal to producer client-process.

21 set next-state to checking-out;

22 resume: }

23 lend loop;

24 end

Algorithm 3. Participant client process

5. CONCLUSIONS

In this paper, we proposed a new two-phase
delta-merge protocol as an approach to incre—
mental merging, for cooperative work. While the
traditional version merging model provides well for
batch merge in the public database, our model

provides for incremental update propagation in

592

multiple workspaces, through dynamic dependency.
Our model shows how the concurrent updates of
the same object separately performed in multiple
workspaces can be merged together before trans-
actions are completely finished. In summary, we
show how the problem of batch merging can be
solved by means of the two-phase delta—merge
protocol based on dynamic dependency. So far, we
have focused on defining a framework of a co-
operative transaction model, as an alternative ap-
proach to the existing version-merging scheme.
Our further research focuses on formalizing the
two-phase delta merge protocol to prove our
cooperative transaction model. In this paper, we
have not dealt with implementation issues, in-
cluding internal operations handled by the coor-
dinator, local transaction managers for handling
workspace transactions, and recovery control

mong workspaces.

6. REFERENCES

[1] Attie, P. C., et al, "Specifying and enforcing
intertask dependencies”, in Proc. Intl Conf. on
Very Large DataBases, 1993, pp. 134-145.

[2] Bandinelli, S., et el., "Software Process Model
Evolution in the SPADE Environment”, IEEE
Trans. Software Eng., vol. 19, 1993, pp. 1128-
1144,

[3] Bandinelli, S., et el., "Modeling and Improving
an Industrial Software Process”, IEEE Trans.
Software Eng., vol. 21, no. 5, May, 1995, pp.
440-454.

[4] Bhattacharya. S, et el, "Coordinating Backup/
Recovery and Data Consistency Between
Database and File Systems ", Proceedings of
ACM SIGMOD International Conference on
Management of Data, 2002, pp. 500-512.

{57 Curtis, B., et el.,, "Process Modeling”, Comm.

[6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

(14]

JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

ACM, vol. 35, no. 9, 1992, pp. 75-90.
Geogakopolous, D., et el, "Specification and
management of extended transactions in a
programmable transaction environment”, In
Proc. of the 10th IEEE Int. Conference on Data
Engineering, 1994, pp. 462-473.

Gillmann. M, et el, "Workflow Management
with Service Quality Guarantees”, Proceedings
of ACM SIGMOD International Conference on
Management of Data, 2002, pp. 228-240.
Heinlein, C., "Workflow and Process Syn-
chronization with Interaction Expression and
Graphs, In Proc. of the 17th IEEE Int. Con-
ference on Data Engineering, 2001, pp. 243~
253.

Hoppe, H. U,, Zhao, J., "C-TORI: An Interface
for Cooperative Database Retrieval”, 5th In
Conf., DEXA '94, 1994, pp. 103-113.

Kim, W., Modern Database systems: Coop—
erative Transactions for Multipleuser Envi-
ronments, Addison-Wesley Publishing Com-
pany, 1995.

Mays E., et al,, "A Persistent Store for Large
Shared Knowledge Bases”, IEEE Trans-
actions On Knowledge And Data Engineering,
Vol.3, NO.1, March 1991, pp. 33-41.

Mittal, N.,"Database Managed External File
Update”, In Proc. of the 17th IEEE Int.
Conference on Data Engineering, 2001, pp.
557-567.

Perry, D. E., and Kaiser, G. E.,"Models of
Software Development Environments”, IEEE
Transactions on Software Engineering, Vol.17,
NO.3, March 1991, pp.283-295.
Rusinkiewicz, M., et al., “Towards a Model for
Multidatabase Transactions”, International
Journal of Intelligent and Cooperative Infor-
mation Systems, Vol. 1, No. 3, 1992.

DATABASE CONSTRUGTION FOR DESIGN OF THE COMPONENTS SOFTWARE BY USING AN INCREMENTAL UPDATE PROPAGATION 593

Am-Suk Oh

Am-Suk Oh is an associate pro-
fessor at Department of Multi-
media Engineering, TongMyong
University of Information Tech-
nology. He received his B.S. and
M.S. degrees in computer sci-
ence from Busan National Uni-
versity and Chung-ang University in 1984 and 1986,
respectively. He received Ph.D degree in 1997 in
computer engineering of Busan National University.
His current research interests are Web Database,
Multimedia Database and XML Database etc.
E-mail: asoh@tmic.tit.ac.kr

Oh-Hyun Kwon

Oh-Hyun Kwon is an associate
professor at Department of Com—
puter Engineering, TongMyong
University of Information Tech-
nology. He received his B.S. and
M.S. degrees from Naval Acad-
emy and Naval Postgraduate
School Monterey CA. in 1975 and 1980, respectively.
He received Ph.D degree in 1989 in computer en-—
gineering of Chung-ang University. His current
research interests are Component-Based Software
Engineering, Object-Oriented Analysis Design and
Implementation, System Software etc.

E-mail: ohkwon@tmic.tit.ac.kr

For information of this article, please send e-mail
to: asoh@tmic.tit.ackr(Am-Suk Oh)

