경쟁적 조건부 밀도 전파를 이용한 실시간 다중 인물 추적

Real-time Multiple People Tracking using Competitive Condensation

  • 강희구 (포항공과대학교 컴퓨터공학과) ;
  • 김대진 (포항공과대학교 컴퓨터공학과) ;
  • 방승양 (포항공과대학교 컴퓨터공학과)
  • 발행 : 2003.08.01

초록

조건부 밀도 전파(Condensation)는 강건한 추적 성능과 실시간 구현이 가능하다는 장점을 지닌다. 그러나 정확한 추적을 수행하기 위해서는 복잡한 형태 모델과 많은 수의 샘플을 요구하므로 현실적으로 실시간 다중 추적에 적합하지 않은 경우가 많다. 본 논문에서는 실시간 응용에 적합하도록 작은 탐색 공간을 갖는 이산 형태의 형태 모델과 다중 추적 시각 추적기간의 상호 경쟁 관계를 고려하여 적은 수의 샘플로도 좋은 추적 성능을 보이는 경쟁적 Condensation 알고리즘을 제안한다. 실험 결과, 제안한 경쟁적 추적 알고리즘은 복잡하게 이동하는 여러 군중을 실시간으로 강건하게 추적함을 보인다.

The CONDENSATION (Conditional Density Propagation) algorithm has a robust tracking performance and suitability for real-time implementation. However, the CONDENSATION tracker has some difficulties with real-time implementation for multiple people tracking since it requires very complicated shape modeling and a large number of samples for precise tracking performance. Further, it shows a poor tracking performance in the case of close or partially occluded people. To overcome these difficulties, we present three improvements: First, we construct effective templates of people´s shapes using the SOM (Self-Organizing Map). Second, we take the discrete HMM (Hidden Markov Modeling) for an accurate dynamical model of the people´s shape transition. Third, we use the competition rule to separate close or partially occluded people effectively. Simulation results shows that the proposed CONDENSATION algorithm can achieve robust and real-time tracking in the image sequences of a crowd of people.

키워드

참고문헌

  1. Haritaoglu, I. and Harwood, D. and Davis, L., '$W^4$: Real time surveillance of people and their activities,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, August 2000 https://doi.org/10.1109/34.868683
  2. Isard, M. and Blake, A., 'Contour tracking by stochastic propagation of conditional density,' Proc. European Conference on Computer Vision, pp. 343-356, Freiburg, Germany, 1996 https://doi.org/10.1007/BFb0015549
  3. Philomin, V. and Duraiswami, R. and Davis, L. S., 'Quasi random sampling for condensation,' Proc. European Conference on Computer Vision, 2000
  4. Cootes, T. F. and Taylor, C. J. and Lanitis, A. D. and Cooper, H. and Graham, J., 'Building and using flexible models incorporating grey-level information,' Proc. IEEE International Conference on Computer Vision, pp.242-246, 1993 https://doi.org/10.1109/ICCV.1993.378212
  5. Haykin, S., Neural networks: A comprehensive foundation, p.443-465, Prentice-Hall, 1999
  6. Baumberg, A. and Hogg, D. C., 'Learning flexible models from image sequences,' Proc. European Conference on Computer Vision, 1994 https://doi.org/10.1007/3-540-57956-7_34
  7. Rabiner, L. R., 'A Tutorial and Hidden Markov Models and Selected Applications in Speech Recognition,' Proceedings of IEEE, Vol 77, No. 2, 1989 https://doi.org/10.1109/5.18626
  8. Castleman, K. R., Digital Image Processing, Prentice Hall, 1996
  9. Kim, C. and Hwang, J., 'Fast and Robust Moving Object Segmentation in Video Sequences,' IEEE International Conference on Image Processing (ICIP'99), Vol. 2, pp. 131-134, Kobe, Japan, October, 1999 https://doi.org/10.1109/ICIP.1999.822869