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Abstract Tight junctions (TJ) between adjacent Sertoli cells
in testis are important for the formation of the blood testis
barrier (BTB). In an effort to verify the reproductive health
risk of endocrine-active chemicals (EACs), changes in the
transepithelial electrical resistance (TER) and the expression
of TJ genes were examined by co-planar polychlorinated
biphenyl (PCB) treatment in cultured mouse Sertoli cells.
Although the increase in TER of Sertoli cells was accelerated
by 10 nM co-planar PCB, it was downregulated by 100 nM
co-planar PCB. The expression of claudin-1 was downregulated
by co-planar PCB in a concentration-dependent manner. On
the contrary, the expression of claudin-11 was increased in the
Sertoli cells by 10 nM co-planar PCB treatment. These results
suggest that the structure and function of TJ may be targeted
by co-planar PCB in Sertoli cells. Assessment of the structure
and function of TJ in Sertoli cells might be useful for screening
the reproductive health risk of EACs.
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Polychlorinated biphenyls (PCBs) are ubiquitous and
persistent environmental contaminants. So far, most of
PCBs-related studies have been concentrated on the
development of the tools for the control of PCB in the
environment as well as the assessment of toxicity of PCBs
[31, 36, 37]. Individual PCB congeners exhibit different
physicochemical properties and biological activities, resulting
in different environmental distributions and toxicity profiles.
The variable composition of PCB residues in environmental
matrices and their different mechanisms of toxicity complicate
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the development of scientifically based regulations for the
risk assessment. To screen for and assess the male
reproductive health risks of exogenous endocrine-active
chemicals (EACs), some approaches for the assessment of
risks of test compounds on the male reproduction system
have been examined [7, 12, 17, 34]. However, the endpoints
of these assays are still limited to the gross anatomical
changes in the reproductive organs and serum hormone
levels [33]. Basically, spermatogenesis is supported by
Sertoli cells, and impairment of spermatogenesis by
xenobiotics might be attributed to changes in the Sertoli
cell functions in mammals [47]. Alterations of gene expression
in Sertoli cells in intact animals or cultured Sertoli cells
have been used to screen and assess the male reproductive
health risks of exogenous EACs. Junctional complexes
have important roles in the control of cell proliferation and
differentiation in many different organs. In the case of gap
junctional communication, inhibition of cell communication
is often observed after treatment of the cells with many
tumor promoters, including halogenated hydrocarbons and
their metabolites [19, 39, 43, 48]. Halogenated hydrocarbons,
alone or in specific combinations, can alter GJIC at the
post-translational level, including aberrant localization of
gap junction protein [1, 16, 23]. Similarly, the tumor promoter
can alter tight junction (TJ) in various tissues [25, 30, 49].
Recently, it was reported that PKC-alpha as well as PKC-
epsilon may be target molecules for ortho-PCBs in
neuronal cells [51]. However, it has not been proven if
halogenated hydrocarbons can alter the structure and
function of TJ in male reproductive organs. In testis, TJs
between Sertoli cells are important for the formation of the
blood testis barrier (BTB) which creates a regulated
paracellular barrier for the movement of water, solutes, and
immune cells from circulation to seminiferous tubule, and
is crucial for normal progression of spermatogenesis [6, 8,
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14, 40]. The structure and functions of TJ are under control
of paracrine and endocrine as well as physicochemical
factors in various tissues [20, 32, 50]. A pathologic condition
in TJ is known to be related to diverse diseases, including
male infertility and microbial infection in epithelia [4, 24,
46, 53]. Among the components of the TJ, occludin is
expressed in large amounts in Sertoli cells and plays an
important role in spermatogenesis [41, 42]. Claudin-1 that
is expressed rather ubiquitously, even in organs lacking
epithelia, is largely expressed in endothelial tissues [28].
Claudin-11, also known as an oligodendrocyte-specific
protein (OSP), is expressed in Sertoli cells [2, 11, 29].
Although recent studies have focused on the cloning and
tissue distribution of the TJ genes and their function in the
formation of TJ in the testis, little is known about the effect
of EACs on the expressions and barrier function of TJ in
Sertoli cells. In an effort to verity the toxic effect of PCBs
and to develop tools for screening the reproductive health
risk of EACs, the effects of PCBs on the expression of TJ
genes and transepithelial electrical resistance (TER) in
cultured mouse Sertoli cells were analyzed.

MATERIALS AND METHODS

Primary Culture and Drug Treatment

Testes were isolated from two-week-old ICR male mice
and blotted onto filter paper to clear the blood. After
mincing in phosphate buffered saline (PBS), tissues were
incubated in PBS, containing 0.1% collagenase (Sigma,
C-2674) and 20 pug/ml DNAse (Sigma DN-25), at 37°C
for 30 min. Following a stay in unit gravity for 15 min,
the Leydig cell-enriched fraction of supernatant was
decanted. Seminiferous tubule fragments in the bottom of
the tube were collected and incubated in PBS, containing
0.25% trypsin (Sigma T-4799) and DNAse (20 pg/ml)
at 37°C for 15 min. After filtration through nylon mesh
(Falcon 2350, mesh size 70 um), the filter-through was
centrifuged at 800 xg for 10 min. Resulting cell pellet
was suspended in DMEM F12 medium and washed twice
by centrifugation. Final cell pellet was suspended in fresh
medium, plated on a 6-well culture dish and cultured with
5% CO, n air at 35°C. After 48 h, cells were treated with
hypotonic solution (20 mM Tris, pH 7.3) for | min to
remove germ cells. Remained Sertoli cells were cultured
further for 24 h. After the subculture, Sertoli cells were
transferred to a cell culture plate insert (Millipore, pore size
0.4 um, inner diameter 6 mm) at 1.7x10°/well. Following
the confirmation of the cell monolayer formation,
3,3'.4.4' 5 -pentachlorobiphenyl {co-planar PCB) dissolved
in dimethylsulfoxide (DMSQ) was added to the cell culture.
Control cells were treated with DMSO (final 0.1%). Sertoli
cells were subjected to RNA extraction at 48 h after the
PCB treatment.
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Fig. 1. System for measuring transepithelial resistance (TER) of
Sertoli cell monolayer.

Voltmeter equipped with two electrodes was used to measure TER of
Sertoli cell monolayer on the cell culture plate insert.

Measurement of Transepithelial Electrical Resistance
(TER)

TER of the Sertoli cell momolayer on the insert plate was
measured using a voltmeter equipped with 2 silver electrodes
{Millipore, MA, U.S.A)) in the presence or assence of
PCBs in the bottom well (Fig. 1). Before the measurement,
TER of the medium was set to “zero” and a sample TER
was subtracted by that of a cell-free insert (blank). After
the addition of co-planar PCB, TER was measured at 12 h
intervals and the net change in TER (TER at given time-
TER at drug treatment) was calculated. Statistical significance
of the net change in TER was examined by Stude1t’s 7-test.

Semiquantitative Reverse Transcription Polymerase
Chain Reaction (RT-PCR)

Total RNA was extracted from the Sertoli cell culture by
the basic protocol of Chomczynski and Sacchi |5]. RNA
samples (1.25 pug) were reverse-transcribed in a 40-ul
reaction mixture with 400 units of SuperScript™ JT reverse
transcriptase and 1 g of oligo (dT)12-18 primer according
to the standard protocol of the supplier. RT reaction was
conducted for ! h at 42°C using a PCR thermal cycler
(I cycler, BioRad). Following the RT reaction, the samples
were heated for 5 min at 99°C and then placed on ice. Mouse
claudin-1 primers were designated 5-TCTGGGAGGTG-
TCCTACTTT-3' (forward) and 5'-CACAGTTCCGATAA-
CCATCA-3" (reverse) according to the mouse claudin-1
c¢DNA sequence [10]. The primers for mouse claudin-11
were designated S-TATAAGTTGAGGTGGGTGTC-3'
(forward) and 5-ATTGGTGTTTACACCCATGAAGC-3'
(reverse) according to the mouse claudin-11 cDNA sequence
[3]. For semi-quantitative analysis, the glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) cDNA was amplified as
an internal control. The primers for mouse GAPDH were
5-AGTGGAGATTGTTGCCATCAACGAC-3' (forward)
and 5-GGGAGTTGCTGTTGAAGTCGCAGGA-3' (reverse)
[35]. These primer sets gave rise to amplicons of claudin-1,
claudin-11, and GAPDH diagnostic fragments of 213 bp,
382 bp, and 791 bp, respectively. PCR of cDNA equivalent
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Fig. 2. Optimization of RT-PCR procedure.

(A) PCR products of claudin-1 and claudin-11 according to the
amplification cycles in mouse Sertoli cell cDNA. (B) Amplification curves
of PCR-products of claudin-1 and -11.

to 0.5 pg of total RNA per 1 ul was carried out in 50 pl of
Ix PCR buffer (10 mM Tris-HCI, pH 8.3, containing 50
mM KCl, 1.5 mM MgCl,), 0.2 mM each of the 4dNTPs, 1
unit Ex Taq polymerase (Takara, Japan), 2 pmol each of
the appropriate primers, and 1 !l of the reverse transcription
reaction. The PCR program for claudin-1 and claudin-11 was
incubation at 94°C for 3 min, followed by a cycle program
of 94°C for 30 sec, 63°C for 30 sec, and 72°C for 45 sec (29
cycles). For GAPDH, incubation at 94°C for 3 min was
followed by a cycle program of 94°C for 30 sec, 60°C for
30 sec, and 72°C for 30 sec (25 cycles). The last cycle was
conducted with a 10 min extension at 72°C. The number of
amplification cycle was set to 17 to 40 rounds of PCR.
According to the increase in number of PCR cycle, the
amounts of amplicons of claudin-1 and claudin-11 were
linearly increased from 24 to 40 cycles and from 19 to 31
cycles, respectively (Figs. 2A and 2B). Thereafter, the
number of amplification cycle for claudin-1 and claudin-
11 were fixed at 29 and 23 cycles, respectively. Following
the amplification, the PCR products (20 ul) were run on
2% agarose gels containing 0.5 ug/ml ethidium bromide
and photographed under UV light. After the densitometric
analysis of band intensity of amplicons, the relative
amount of TJ genes transcript versus GAPDH was plotted.
To determine the sequences, the PCR product was
subcloned into pGEM-TEasy vector and sequenced by
the dideoxynucleotide chain termination method, using the
ABI Prism BigDye terminator cycle sequencing kit (PE-
Biosystems, CA, U.S.A.).

Statistical Analysis

StatView for Windows version 5.0 (SAS Institute Inc.,
Cary, NC, U.S.A.) was used for the statistical analysis of
results. All results are shown as meantSD. Data were
analyzed by the two-tailed Student’s #-test. Significance
was accepted at p<0.05.
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RESULTS AND DISCUSSION

Regardless of the co-planar PCB treatment, TER of Sertoli
cells increased during culture (Fig. 3). This suggests that
the culture condition was permissive to the development of
a paracellular barrier in Sertoli cells. During the culture for
24 h, TER of Sertoli cell monolayer rapidly increased in
the presence of 10 - 100 nM co-planar PCB. On the other
hand, control cells showed a rather constant TER. During
the next 24 h of culture, the increase in TER in the 100 nM
co-planar PCB-treated cells slowed down. On the other
hand, control cells showed a rapid increase in TER (Fig.
3). At the end of culture, TER of Sertoli cells treated with
10 nM co-PCB was significantly higher than others. However,
the TER of 100 nM co-planar PCB-treated cells was
significantly lower than the control cells (Fig. 3). Because
the magnitude of TER is different depending on the cell
type as well as differentiation status in varying tissues, the
results suggest that 10 nM co-planar PCB might have
potentiated the differentiation of Sertoli cells. Previously,
it was reported that co-planar PCB was cytotoxic at
concentrations greater than 50 nM in rat hepatoma cells
and Sertoli cells [18, 38]. Therefore, attenuation of the
increase in TER during 24 to 48 h of culture as well as
significant difference in TER value at 48 h after 100 nM
co-PCB treatment might be attributed to the cytotoxic
effect of co-planar PCB at 100 nM concentration. Most
effects of PCBs can be attributed to its activation of the
aryl hydrocarbon receptor (AhR), a bHLH/PAS transcription
factor, which upregulates a variety of genes (the Ah gene
battery) and mediates dioxin toxicity in the immune
system, skin, testis, and liver. Toxic phenomena mediated
by AhR are associated with altered cell proliferation or
differentiation [21, 26, 45]. Therefore, it can be suggested
that changes in TER might be attributed to the alteration of
Sertoli cell differentiation by co-planar PCB.

The amplicons of claudin-1 and claudin-11 were detected
after RT-PCR of the total RNA from mouse Sertoli cells
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Fig. 3. Effect of co-planar PCB on the TER of Sertoli cells
monolayer.

Changes in TER during cell culture for 48 h. Before the measurement,
TER of medium was set to “zero” and sample TER was subtracted by that
of a cell-free insert (blank). Net change in TER (TER at given time - TER
at drug treatment) was calculated. *, Significantly different from control by
Student’s r-test (p<0.05). Error bars are SD (n=4).
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Fig. 4. Semiquantitative RT-PCR analysis of the expression of
claudin-1 and -11 in mouse Sertoli cells.

(A) RT-PCR analyses of claudin-1 and claudin-11 expressions were
conducted using the total RNA isolated from Sertoli cells. Number of PCR
cycle was 29, 23, and 25 for claudin-1, claudin-11, and GAPDH,
respectively. (B) Relative amount of RT-PCR products of claudin-1 and -
11 mRNAs was calculated by dividing by internal controls, GAPDH. *,
Significantly different from control by Student’s ¢-test (P<0.05). Error bars
are SD (n=4).

(Figs. 2A and 2B). Co-planar PCB caused a loss of claudin-
I expression in Sertoli cells in a concentration dependent
manner (Figs. 4A and 4B). Concomitantly, there was a
reciprocal increase in the claudin-11 expression in 1 and
10 nM co-PCB treated cells (Figs. 4A and 4B). Taken
together, it suggests that upregulation of claudin-11 might
be responsible for the increase in TER of Sertoli cells by
co-planar PCB, and that claudin-1 has little or no effect
on the paracellular permeability in cultured mouse Sertoli
cells. It also emphasizes that expression of TJ components
was differentially affected by co-planar PCB. The reciprocal
pattern in the expression of caludin-1 and claudin-11 might
be a useful marker for the paracellular barrier property of
Sertoli cell TJ; Increase in claudin-11 expression might be
a phenotype associated with the differentiation of Sertoli
cells characterized by increased paracellular barrier property.
Switching in the expression of tight junctional proteins
from one type to another is expected to evoke profound
changes in the barrier property of the Sertoli cells and thus

spermatogenesis. During spermatogenesis, TJs between
Sertoli cells are dynamically gated by systemic end locally
produced signals including growth factors, cytokines, and
steroids [6, 27], allowing for the passage of germ cells to
the lumen. Similarly, biologically active factors, including
growth factors, cytokines, steroids, and extracellular matrix
proteins, have been known to regulate the expression of TJ
genes and TER in various organs including testis [9, 13,
15, 22,27, 44]. Recently, it was reported that testosterone
increased the expression of occludin and TER rat Sertoli
cells [6]. Undoubtedly, PCBs have steroid hormone-
mimicking activity in several different cell types. Aroclor
PCB mixtures were found to antagonize androgen receptor
(AR)-mediated transcription in the presence of the natural
AR ligand, but Aroclor 1254 has a weak agonistic activity
with AR in the absence of natural ligand [52]. Therefore,
co-planar PCB might have mimicked the biological action
of androgen and potentiated the TER and claudin-11
expression in Sertoli cells. In summary, this is the first report
that co-planar PCB alters the expression of TJ genes and
TER in mouse Sertoli cells. The results suggest that co-
planar PCB may alter the functional operation of the blood
testis barrier in testis, thus affecting spermatogenesis.
Analysis of the structure and function of TJ in Sertoli cells
might be useful for the screening and risk assessment of
environmental contaminants and drugs influencing male
reproduction.
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