Abstract
The techniques of GIS and remote sensing are being applied to hydrology, geomorphology and various field of studies are performed by many researcher, related those techniques. In this paper, curve number change detection is tested according to soil map and land cover in mountain area. Neural networks method is applied for land cover classification and GIS for curve number calculation. The first, sample area are selected and tested land cover classification, NN(84.1%) is superior to MLC(80.9%). So we selected NN with land cover classifier. The second, curve number from the land cover by neural network classifier(57) is compared with that(curve number) from the land cover by manual work(55). Two values are so similar. The third, curve number classified by NN in sample area was applied and tested to whole study area. As results of this study, it is shown that curve number is more exact and efficient by using NN and GIS technique than by (using) manual work.
GIS기법과 원격탐사 기법은 수문학의 지형자료 구축과 응용 분야에 활발하게 이용되고 있으며 다방면에서 많은 연구가 진행 중이다. 본 연구에서는 산악지역에서 토양 특성과 토지 피복 상태에 따라 유출 특성이 어떻게 나타나는지를 CN값을 산정하여 평가 하였다. 토지 피복 분류에 신경망 기법을 사용하여 보다 적합한 분류 방법을 모색하고자 했고, CN값 산정을 위한 연산에 GIS기법출 사용하였다. 우선 샘플지역을 선정하여 토지 피복의 정확도를 평가하면, 기존의 최우도법(80.9%)과 신경망 기법(84.1%)에서 신경망 기법 분류 결과가 상대적으로 우수하므로 신경망 기법으로 토지 피복을 분류하였다. 그리고 SCS방법으로 토양도를 이용하여 AMC-II 조건하에서 CN값을 산정하면 수작업 토지이용도는 55, 신경망 분류 토지 피복도는 57로 비슷한 결과로 나타났다. 이를 토대로 전체 유역에 대해서 신경망 기법으로 분류한 토지 피복도를 사용하여 CN값을 산정하여 적용함으로써 타당성을 증명했다. 앞으로 신경망 기법을 이용한 토지 피복 분류와 GIS기법의 적용으로 보다 정확하고 신속한 CN값 산정이 가능할 것으로 사료된다.