DOI QR코드

DOI QR Code

Analysis of Rainfall Effect on the GIUH Characteristic Velocity

GIUH 특성속도에 대한 강우의 영향 분석

  • 김기욱 (성균관대학교 토목환경공학과) ;
  • 노정환 (성균관대학교 토목환경공학과) ;
  • 전용운 (성균관대학교 토목환경공학과) ;
  • 유철상 (고려대학교 토목환경공학과)
  • Published : 2003.08.01

Abstract

This study analyzed several storm events observed in the Seolma-chun basin to derive the characteristic velocity of GIUH (Geomophological Instantaneous Unit Hydrograph) as well as its variability. Especially, this study focused on the variation of characteristic velocity due to the change of rainfall characteristics. The IUH of the Seolma-chun basin was derived using the HEC-1, whose peak discharge and time were then compared with those of the GIUH to derive the characteristic velocities. The characteristics velocities were analyzed by comparing with the GcIUH (Geomorphoclimatic IUH) as well as the characteristics of rainfall. Results are summarized as follows. (1) The characteristic velocity of GIUH was estimated higher with higher variability than the GcIUH, but their trends were found similar (2) Total amount of effective rainfall (or, mean effective rainfall) well explains the characteristic velocity of GIUH. This could be assured by the regression analysis, whose coefficient of determination was estimated about 0.6. (3) The duration and the maximum intensity of rainfall were found not to affect significantly on the characteristic velocity of GIUH. The coefficients of determination were estimated less than 0.3 for all cases considered. (4) For the rainfall events used in this study, the characteristic velocities of GIUH were found to follow the Gaussian distribution with its mean and the standard deviation 0.402 m/s and 0.173 m/s, respectively. Most of the values are within the range of 0.4∼0.5 m/s, and its coefficient of variation was estimated to be 0.43, much less than that of the runoff itself (about 1.0).

본 연구에서는 설마천 유역에서 관측된 여러 강우-유출사상을 분석하여, 각 사상마다 GIUH의 특성속도를 추정하고, 이를 분석하여 그 변동특성을 살펴보았다. 특히, 본 연구에서는 강우의 특성에 따른 특성속도의 변화에 초점을 맞추어 분석하였다. 설마천 유역의 순간단위도는 HEC-1모형을 이용하여 유도하였으며, 이렇게 유도된 순간 단위도의 첨두유량과 첨두시간을 GIUH의 그것과 비교함으로서 특성속도가 계산될 수 있도록 하였다. 각 강우사상별 특성속도는 GcIUH 및 강우의 여러 특성과 비교분석하였다. 이 과정을 통하여 얻은 결과를 정리하면 다음과 같다. (1) GIUH의 특성속도는 GcIUH의 그것보다 변동정도가 크고 아울러 약간 크게 산정되었으나 그 경향은 유사한 것으로 파악되었다. (2) 총유효우량(또는, 평균유효우량)이 GIUH의 특성속도를 상대적으로 잘 설명함을 파악할 수 있었다. 이는 회귀분석의 결과로 나타나는데 그 결정계수가 0.6 전후로 크게 나타났다. (3) 반대로 강우의 지속 기간이나 최대강우강도는 GIUH의 특성속도를 결정하는데 큰 영향을 끼치지 못하고 있음을 파악하였다. 회귀분석 결과 결정계수는 최대 0.3을 넘지 않았다. (4) 본 연구에서 분석한 강우사상들의 경우 GIUH의 특성속도의 분포가 평균 0.402m/s 표준편차0.173 m/s인 정규분포를 따르는 것으로 나타났으며, 주로 0.4∼0.5 m/s 사이에 대부분의 값이 위치하는 것으로 나타났다. 그 변동계수는 0.43정도로 유출의 경우(대략 1.0 정도)에 비해 훨씬 적은 변동특성을 나타냄을 확인할 수 있었다.

Keywords

References

  1. 김상단, 유철상, 윤용남(2000). 지형형태학적 순간단 위도의 특성속도에 대한 고찰, 한국 수자원학회 논문집, 제33권 제3호, pp.315-330
  2. 백경록, 최종남, 유철상, 김중훈(2000). 강우-유출관계의 변동성에 관한 고찰, 대한토목학회논문집, 제20권 3-B호, pp.377-386
  3. 이혁규, 윤석영, 김재한(1995a) GIUH 확률밀도함수를 위한 지체시간의 수문학적 고찰, 한국수자원학회 1995년도 학술발표회 논문집, pp.331-337
  4. 이혁규, 윤석영, 김재한(1995b) GIUH의 지체시간 산정을 위한 수문학적 해석, 한국수자원학회지, Vol.28, No.4, pp.155-169
  5. Nash, J.E.(1957). The Form of the Instantaneous Unit Hydrograph, Pub. 42, Wallingford, England
  6. Gupta, V.K., Waymire, E., and Wang, C.T.(1980). A Representation of an Instantaneous Unit Hydrograph from Geomorphology, Water Resource Research, Vol.16, No.5, pp.855-862 https://doi.org/10.1029/WR016i005p00855
  7. Drainage Basin Characteristics, Transactions in American Geophysical Union v.13 Horton,R.E. https://doi.org/10.1029/TR013i001p00350
  8. Bulletin of Geological Society of America v.56 Erosional Development of Streams and their Drainage Basins : Geophysical Approach to Quantitative Morphology Horton,R.E. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  9. U. S. Geological Survey professional paper no.252 The Hydraulic Geometry of Stream Channels Some Physiographic Implications Leopold,L.B.;Maddock,Jr.T.
  10. Water Resources Research v.15 no.6 The Geomorphologic Structure of Hydrologic Response Rodriguez-Iturbe, I.;Valdes,J. https://doi.org/10.1029/WR015i006p01409
  11. Water Resource Research v.18 no.4 A Geomorphoclimatic Theory of the Instantaneous Unit Hydrograph. Rodriguez-ltube,I.;Gonzalez-Sanabia,M.;Bras,R.L. https://doi.org/10.1029/WR018i004p00877
  12. Trans. Am Geophys. Union v.38 no.6 Quantitative Analysis of Watershed Geomorphology Strahler,A.N. https://doi.org/10.1029/TR038i006p00913
  13. J. Gelo. v.75 Infinite Topologically Random Channel Networks Shreve,R.L. https://doi.org/10.1086/627245
  14. Water Resource Research v.15 no.6 A Rainfall Runoff Analysis of the Geomorphologic IUH Valdes,V. ;Fiallo,Y.;Rodriguez-Iturbe,I. https://doi.org/10.1029/WR015i006p01421
  15. Gupta, V.K. and Waymire, E.(1983). On the Formulation of an Analytical Approach to Hydrologic Response and Similarity at the Basin Scale, J. Hydrol., Vol.65, pp.95-123 https://doi.org/10.1016/0022-1694(83)90212-3
  16. Horton, R.E.(1932). Drainage Basin Characteristics, Transactions in American Geophysical Union, Vol.13, pp.350-361
  17. Horton, R.E.(1945). Erosional Development of Streams and their Drainage Basins : Geophysical Approach to Quantitative Morphology, Bulletin of Geological Society of America, Vol.56, pp.275-370 https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  18. Leopold, L.B. and Maddock, Jr.T.(1953). The Hydraulic Geometry of Stream Channels Some Physiographic Implications, U. S. Geological Survey professional paper, No.252, Washington, D.C.
  19. Rodriguez-Iturbe, I. and Valdes,J.(1979). The Geomorphologic Structure of Hydrologic Response, Vol.15, No36, pp.1409-1420 https://doi.org/10.1029/WR015i006p01409
  20. Rodriguez-ltube, I., Gonzalez-Sanabia, M., and Bras,R.L.(1982). A Geomorphoclimatic Theory of the Instantaneous Unit Hydrograph, Water Resource Research, Vol.18, No.4, pp.877-886 https://doi.org/10.1029/WR018i004p00877
  21. Strahler, A.N.(1957). Quantitative Analysis of Watershed Geomorphology, Trans. Am Geophys. Union, Vol.38, No.6, pp.913-920 https://doi.org/10.1029/TR038i006p00913
  22. Shreve, R.L.(1967). Infinite Topologically Random Channel Networks, J. Gelo., Vol.75, pp.178-186 https://doi.org/10.1086/627245
  23. Valdes, V., Fiallo, Y., and Rodriguez-Iturbe, I.(1979). A Rainfall Runoff Analysis of the Geomorphologic IUH, Water Resource Research, Vol.15, No.6, pp.1421-1434 https://doi.org/10.1029/WR015i006p01421

Cited by

  1. Application of the Width Function Instantaneous Unit Hydrograph: A Case Study of Cheongmi River vol.33, pp.4, 2013, https://doi.org/10.12652/Ksce.2013.33.4.1425
  2. Estimation or Threshold Runoff on Han River Watershed vol.39, pp.2, 2006, https://doi.org/10.3741/JKWRA.2006.39.2.151
  3. Flood Estimation and Evaluation of Efficiency of Sewer Networks Using Geomorphological Analysis vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.569