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Optimal Scheduling of Drug Treatment for HIV Infection:
Continuous Dose Control and Receding Horizon Control

Hyungbo Shim, Seung-Ju Han, Chung Choo Chung, Sang Won Nam, and Jin Heon Seo

Abstract: It is known that HIV (Human Immunodeficiency Virus) infection, which causes AIDS
after some latent period, is a dynamic process that can be modeled mathematically. Effects of
available anti-viral drugs, which prevent HIV from infecting healthy cells, can also be included
in the model. In this paper we illustrate control theory can be applied to a model of HIV infec-
tion. In particular, the drug dose is regarded as control input and the goal is to excite an immune
response so that the symptom of infected patient should not be developed into AIDS. Finite hori-
zon optimal control is employed to obtain the optimal schedule of drug dose since the model is
highly nonlinear and we want maximum performance for enhancing the immune response. From
the simulation studies, we found that gradual reduction of drug dose is important for the optimal-
ity. We also demonstrate the obtained open-loop optimal control is vulnerable to parameter varia-
tion of the model and measurement noise. To overcome this difficulty, we finally present nonlin-

ear receding horizon control to incorporate feedback in the drug treatment.

Keywords: Chemotherapy, HIV, optimal control, receding horizon control.

1. INTRODUCTON

Human Immunodeficiency Virus (HIV) is the virus
that causes Acquired Immune Deficiency Syndrome
(AIDS). Infection with HIV can weaken the immune
system in human body to a level at which it has diffi-
culty fighting off certain infections. This is because a
major target of HIV is the CD4 T-helper cell, which is
a key component of the adaptive immune system in
human body, and HIV infection reduces the number
of CD4 cells in the body. AIDS is usually judged by
counting CD4 cells; when the count of CD4 cells is

below 200/ mm® in blood, the HIV infected person
is regarded as an AIDS patient [12]. With very few

Manuscript received June 10, 2003; accepted July 31,
2003. This work was supported by the Basic Research Pro-
gram of the Korea Science and Engineering Foundation
(Grant No. KOSEF R01-2002-000-00227-0). The authors
are grateful for the help of Y. H. Huh at Hanyang Univer-
sity about her knowledge of immunology. Recommended
by Editorial Board member Sun Kook Yoo under the direc-
tion of Editor Keum-Shik Hong.

H. Shim, C. C. Chung and S. W. Nam are affiliated with
ECE division, Hanyang University, Seoul, Korea (e-mail:
h.shim @ieee.org, cchung @hanyang.ac.kr, swnam @hany-
ang.ac.kr).

S. J. Han is a M.S. candidate at School of Electrical En-
gineering, Seoul National University, Korea (e-mail:
sjhan75 @hanmail.net).

J. H. Seo is affiliated with School of Electrical Engineer-
ing at Seoul National University, Korea (e-mail: jhseo
@snu.ac.kr).

CD4 cells the immune system of a patient cannot
function normally, and thus, the patient is very vul-
nerable to other infections. These types of infections
are known as ‘opportunistic infections’ because they
take the opportunity a weakened immune system
gives to cause illness or to result in death.

Although HIV weakens the immune system, it still
works inside the patient. For example, APC (Antigen-
Presenting Cell) of a HIV infected patient still signals
precursor CTL (Cytotoxic T Lymphocytes) cells to
differentiate into killer T cells (effector CTL) and
killer T cells still destroy infected CD4 cells in which
new virus is born. On the other hand, there are sev-
eral developed drugs which can inhibit HIV from
infecting CD4 cells. This means that HIV infection
process is a quite complicated interaction among
many different cells, virus and drug. Therefore, some
quantitative analysis (as well as a qualitative one)
might be important.

In order to gain much insight about this compli-
cated phenomenon, mathematical models of HIV in-
fection (including the effects of drugs) have been
developed in, for example, [1,7,11,13,14]. Based on
these models, control engineers have also studied
optimal drug dose control problems (see, e.g.,
[2,4,6,8,9,16,17,21]). In particular, Wodarz and
Nowak [18-20] have recently presented a model in
which both the memory CTL precursor and the mem-
ory CTL effector are appropriately described, and
have shown that the medication can be stopped while
the viral load and the number of uninfected CD4 cells
remain at a low and high level, respectively, so that
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the HIV infected patient would not progress to AIDS.
Zurakowski and Teel [21] have bestowed some con-
trol engineering concept upon the result of Wodarz
and Nowak by applying Model Predictive Control
method to the model of [19].

This paper further investigates the model of [7,20]
in the sense that continuous variation of drug dose is
allowed. Our result shows that a gradual reduction of
dose leads to maximally excited CTL response,
which has not been addressed in the previous works
of [18-21] where either full dose or no medication is
allowed. In Section 2, we formulate our problem and
give some analysis of the model considered in this
paper. Optimal control result is illustrated in Section
3 while feedback control via receding horizon control
technique is presented in Section 4. Conclusions are
given in Section 5.

2. MODEL DESCRIPTION AND ANALYSIS

There are already several mathematical models
available which describe interactions between HIV
and immunocytes in human body. (See [14] or [11]
for comprehensive exposition of the HIV infection
modeling.) Among them, we have chosen a model
from [7,20] because the CTL response is appropri-
ately modeled. (It is interesting to see that other mod-
els such as used in [2,4,6,9,16] do not have memory
CTL terms, so that termination of drug treatment
again leads to the proliferation of viral load. Although
those models fit well to the description of the initial
phase of HIV infection, it is not suitable for develop-
ing a long-term plan of medical treatment for HIV
patients.)

The model considered in this paper is given by

x(t)=A—dx(t) - (L—nu@)) x()v(),

y(t)= B=nu®)x(t)v(t) - ay(t) - p y(t) z(2),

v(t) =k y(t) — uv(1), (D
w(t) = ¢ x(2) (O w(t) — cq y(£) w(t) —bw(D),
z2(t)=cqy®)w(t)—hz(),

where all the states implies the population of speci-
fied cells (or virus) in a unit volume of blood (and
therefore they are meaningful only when positive).
Each of them is uninfected CD4 T-helper cell (x),
infected CD4 T-helper cell (y), memory CTL precur-
sor (w), memory CTL effector (z) and free virus (v).
The input (u) represents the drug dose, which may
have values between O and 1. If u = 1, a patient is
fully dosed, while zero input implies no medication at
all.

An interpretation of the model is not very difficult.
For example, the population of healthy (uninfected)
CD4 T-helper cell increases at a rate A (since it is
produced from thymus), and decreases at a rate dx
(since a cell dies naturally) which is modeled to be

proportional to the population of x. The CD4 T-helper
cell (x) is also a target of HIV (v) so that its popula-
tion decreases proportionally to x(f) and v(f). When
the cell x is infected, it becomes the infected cell y
that generates new virus, which is modeled by the
term ky(¢) in the third equation. The infected cell y
and the virus v also die out at a rate ay and v, re-

spectively. The model (1) also describes the ‘adaptive
cell-mediated immune system’ equipped in human
body. They consist of the CTL precursor w (a cell
which provides a long-term memory for a specific
antigen; HIV in this paper) and the CTL effector z (a
cell which actually kills the infected cell y at a rate
pyz; see the second equation). The cell w differenti-
ates into the cell z at a rate of cqgyw (that is, the given
model implies that the larger population of the in-
fected cell y and the CTL precursor w makes the
population of z increase more quickly). Finally, the
term cxyw in the fourth equation implies that the CTL
precursor w is generated at a rate proportional to the
number of x, y and w itself.

The model (1) also includes the effect of the drug
known as Reverse Transcriptase Inhibitor (RTI),
whose role is to inhibit the virus from infecting new
cells by preventing the reverse transcription. (Reverse
transcription is a process of HIV infection that the
genetic code of HIV to joins the DNA of host cell (y
in the model) in order to force the host cell to pro-
duce another HIV.) Therefore, the control input u,
representing RTI, may alter the infection rate f to

B —n) when the drug is maximally prescribed (i.e.,
u=1). Here, n is a model parameter indicating the
effect of a drug; ne[0,1].

We have also taken the parameters in the model
from [7], whichare A =1, d=0.1, £=0.02,a=0.2,
p=1,¢=0.027,4g=0.5,b=0001, h=0.1, k=25,
# =1, and 7 = 098. The time derivative in the
model is taken with respect to time of a day, i.e., x(1),
x(2), --- imply the quantity of x at the first day, the
second day and so forth.

With these parameters at hand, the equilibrium
points are easily found by making the right-hand side
of (1) zero. We illustrate four equilibrium points that
the model has when there's no medication (u = 0).

Point 1:

-2 J-v=w=z=0.

d b
This point is for a person not having HIV. Stability
analysis for the local linearization of the model with
given parameters shows that this point is an unstable
equilibrium. The model, therefore, asserts that it is

impossible to revert a patient, once infected, back to
the normal status before infection with a retraction of
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medication.

Point 2:

ap o B 5 A o s,
k Bx

With the given parameters, it has the values of x =
0.4, y=4.8 and v = 120, and therefore, this is the

status of a patient, for whom HIV dominates. Stabil-
ity analysis shows it is a stable equilibrium.

Point 3:
. CL(A+dg) — kb B +\[c(A + dg) — kb B — 4c?dg A
2cdu ’
=l 5=l gt D
c(x—q) i cqy py

With our paramters, it has

_____ ]T:

@

[9.8,0.004, 0.1, 8751, 4.7 = X,,,,

which is locally stable. It is seen that the numbers of
viral load and infected cells are maintained small
while the CTL precursor has a large number, which is
desired. Also, because it is locally stable, our control

goal will be to drive an initial state X, to a
neighborhood of X, . Then, in spite of treatment

suspension, a patient is switched into the status of
long-term non-progression to AIDS.

Point 4:

A+ dg) - kb —\[cp(A+dg) — kbBT: — AcPdg Al

=|

2cdu
'y: _b , V:Q, w=h_Z~, Z:——————ﬂxv:ay_
c(x—q) u cqy Dy

With our parameters, it has

which is unstable. This point is not of interest for our
treatment.

For the presentation, two sets of initial conditions
are chosen by

X, := [x(0), y(0), v(0), w(0), (0)] "

=10.4,4.8, 119.9, 0.0001, 0.0001] r
and

X, := [x(0), y(0), v(0), w(0), z(0)}
=[9.94, 0.0069, 0.189, 0.0026, 8.43x 10_6 1 r .

The first one ( X, ) represents a patient who was in-
fected by HIV quite a long time ago and thus virus
population is dominant while the second one ( X)) is

for a patient who has been treated by RTI for a long
time after infection.

Remark 1: In fact, we have identified those
points X, and X, by simulating the model (1)
with an initial condition [10, 0.0001, 0.01, 0.0001,
0.0001] representing newly infected patient (compare
the equilibrium point 1). X, is obtained by integrat-
ing (1) for 60 days without medication, and X, is
obtained by integrating (1) again from X, for an-
other 60 days with full medication u = 1.

3. OPTIMAL SCHEDULING OF DRUG
TREATMENT

In order to solve the problem of enhancing the
CTL response, formulated in the previous section, we
formally pose an input-constrained finite-horizon
optimal control problem given as follows.

Problem: Find an optimal control

u*(-): 0 1) — [0,11 which minimizes the perform-

ance index

J(Xouu() = (X (Tp) = X,) 0y (X(T5) - X,,)

+ jOTf W2 (dr 3)

where X (t)=[x(1), y(t),v(t),w(t),z(t)]T is the solu-
tion trajectory of system (1) initiated at time t=0
by Xg.

For this problem to be meaningful, the target equi-
librium X, is taken by (2) and the initial condition

X, of system (1) will be taken either by X, or
X, in the previous section. We also take Ty =

420(days) so that the medication schedule of more
than one year would be obtained. In the terminal cost,
we select Qf = diag (1,1,1,0.001,1) so that the cost

for the final state w(7,) is less weighted. Small

weighting to the state w is due to the fact that the dy-
namics for the CTL precursor (w) is quite slow and
with the finite-horizon of 420 days it is not fully de-
veloped, and thus, at the end of optimization horizon,

the difference between w (Tf ) and w= 8751 (target

point) would be of the order of several thousands.
The problem to be solved is a continuous-time op-
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Fig. 1. Simulation result for the patient A. Horizontal
and vertical axes indicate time (order of a day)
and the value of states, respectively. Plot of
optimal control u: In the early stage of ap-
proximately 1 week, the drug is fully dosed
for the reduction of viral load. However, some
amount of virus is necessary in order to in-
crease the CTL response (the state w) that
changes slowly. After about 40 days, the opti-
mal dose decreases gradually, which is a com-
promise between two goals; small number of
virus and large number of memory CTL. Plot
of states x, y, z: The number of uninfected cell
(x) goes back to normal, and infected cell (y)
decays, which is caused by the increased CTL
z. Plot of virus v: It decays. Plot of CTL w: It
goes toward the desired equilibrium point 3.

timal control problem, which means the decision vec-
tor u(s) belongs to the infinite-dimensional vector

space. However, to solve it by the digital computer, it
is necessary to approximate u(e) by some finite-

dimensional vector and discretize the nonlinear dy-
namics (1). For our problem, the optimization hori-
zon of 420 days are divided by 420 knot points so
that sampling period becomes one day and the con-
tinuous signal u(s) has 420 knot points. Although

the closed form of discrete time model is not avail-
able, we are still able to handle our problem by inte-
grating the continuous time model (1) using Runge-
Kutta integration (see, e.g., [3]). To increase the accu-
racy, we use variable step-size Runge-Kutta algo-
rithm with piecewise linear interpolation of u(t) dur-
ing the sampling period (i.e., between the knot
points). For these purposes, a package RIOTS (Re-
cursive Integration Optimal Trajectory Solver: a
commercial package to solve continuous time opti-
mal control problem for nonlinear dynamics) running
in MATLAB environment is used in this paper.

The solution for our problem is illustrated in Fig. 1
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Fig. 2. Simulation result for the patient B. This is the
case when the patient has been treated by RTI
for a long period so that the initial conditions
for viral load v, CTL precursor w and CTL ef-
fector z have very small values. Since the CTL
response cannot be excited with these values,
the drug input initially maintains zero value
for short period of time (3 days), after that it is
rapidly changed to nearly full dose. Again,
gradual reduction of dose is observed after the
initial period.

and Fig. 2, which are for the patients A and B having
the initial condition of X, and X, , respectively.

From these simulation results, it is clear that the op-
timal drug dose shows the pattern of gradual reduc-
tion taking about 3 months. While it has been shown
in [18-21] that the termination of medication is pos-
sible with the stimulation of CTL response, it has not
been reported that gradual reduction of dose would
enhance the CTL response optimally, to the authors'
knowledge.

In Fig. 2, it can be noticed that a patient is not
dosed for around 3 days. Since the initial condition

X, is for the patient who has been dosed for a long

time, this result implies that an interruption of treat-
ment is necessary, which has been already observed
in [18-20]. However, our result of Fig. 2 further
shows that, rapid increase and gradual reduction of
dose would be better for the same case.

Finally, we have tried a quantized dose of drug in
Fig. 3 because continuous variation of dose seems
hard to apply in the real treatment of patients. Here,
we have divided the dose by 10 levels. The value of
performance index J in this case is 50142 which is
not very different from the optimal case of continu-
ous drug change (J = 49796). To the contrary, an
abrupt change of dose from 1 to 0 leads to the cost of
60307, which is quite far from the optimal.
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Fig. 3. Simulation result for the patient A. For practi-
cal implementation, drug dose is quantized by
10 levels. Nevertheless, it still maintains simi-
lar trend of the state trajectories in Fig. 1.

4. EMPLOYING FEEDBACK: RECEDING
HORIZON CONTROL

In the real environment, parameter uncertainty in
the model and measurement noise are inevitable.
Fig. 4, for example, shows the case that the optimal
drug control is calculated from the given nominal
model (i.e., the control in Fig. 1) and is applied to a
model having perturbed parameters. For the simula-
tion, each parameter is perturbed by +20% from

the nominal values; that is, 1=0.8, d =0.12, =

0.016,a =0.16, p = 0.8, c= 0.0216, g= 0.6, b= 0.0012,
h=0.08, k=30,and x=0.8 (7 isthe same as be-

fore). The result shows that the CTL response is not
excited and viral load remains at high level of abun-
dance. To overcome this problem, some type of feed-
back control seems necessary.

Receding Horizon Control (or Model Predictive
Control which is now alternatively used in the litera-
ture) is a feedback scheme that has been widely em-
ployed in many practical situations, and is known to
be a way to incorporating ‘feedback’ when the con-
trol is obtained from an open-loop optimal control
problem [10]. Main idea is to solve an open-loop fi-
nite horizon optimization first, and the resulting con-
trol trajectory is applied to the system for a fraction
of the optimization length. At the end of the fraction
of time, the optimization is solved again with new
initial condition measured at that time and the result-
ing control is applied again for the fraction of time.
This process is repeated, which leads to a sampled
feedback control.
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Fig. 4. Blind application of the (open-loop) optimal
control u of Fig. 1 to the system having pa-
rameter variation of +20% Viral load v does

not decrease and the CTL response w is not
excited.

While the idea of using RHC for the HIV infection
control has been already presented in [21] where drug
dose has either 0 (no medication) or 1 (full dose), we
propose, in this paper, the receding horizon control
with continuous change of drug dose. For the stability
of closed-loop system, we take the optimization hori-
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Fig. 5. Simulation result for the patient A. Parameters
are perturbed by +20% and random noise of
+10% is added to each measurement of the

state. It is observed that, although the reaction
of the system to the drug treatment becomes
quite slow, it still excites the CTL response.
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zon large enough as 700 days. (See [5] for a justifica-
tion that long enough optimization horizon guaran-
tees the closed-loop stability.) The sampling period
for the simulation is 1 week; that is, the open-loop
control is obtained every 7 days and it is applied to
the system for 7 days while the rest of control trajec-
tory is discarded. The result is given in Fig. 5, in
which it is observed that the CTL response is excited
and viral load decreases, even under £10% meas-

urement noise (and the same parameter variation as
Fig. 4).
5. CONCLUSIONS

In this paper, we have shown that a continuous-
time nonlinear optimal control scheme can be em-
ployed for enhancing the CTL immune response by
optimally scheduling the drug treatment for HIV in-
fected patients. Our finding from simulation studies
indicates that gradual reduction of drug dose is im-
portant for enhancing the CTL immune response. In
addition, to overcome the problem that the obtained
open-loop control may not be directly applied to the
system having uncertain parameters to some extent,
we have applied nonlinear receding horizon control
scheme to our system, which results in moderate per-
formance under measurement noise and parameter
uncertainty.
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