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Abstract

This paper introduces a unified theory for the radiation problem of adjacent multiple floating
bodies. The particular case of interest is the multiple slender bodies that their centerlines
are parallel. The infinite- and finite-depth unified theories for the single-body problem are
extended to solve each sub-problem of multiple bodies. The present method is valid for
deep water and moderate water depth, and applicable for individually floating bodies as well
as multimaran-type vehicles. For the validation of the present method, the heave and pitch
hydrodynamic coefficients for two adjacent ships are compared with the results of a three-
dimensional method, and an excellent agreement is shown. The application includes the
hydrodynamic coefficients and motion RAOs of four trimarans which have different longitu-
dinal and transverse arrangements for sidehulls.

Keywords: multi-body problem, unified theory, slender-body approach, ship
motions

1 Introduction

Wave interaction between multiple adjacent floating or fixed bodies is important in the design and
operation of ships and offshore structures. The strength of wave interaction is critically dependent
on the distance between adjacent bodies, and the body geometry is also involved. As the bodies
approach closer, the hydrodynamic interaction becomes more profound.

The interaction among multiple cylinders is a practical problem related to the design of off-
shore platforms. An array of vertical axisymmetric cylinders was studied by Spring and Monkmeyer
(1974), taking into account exact linear free surface interaction. For non-axisymmetric multiple
cylinders, many studies including Ohkusu (1974), and Kagemoto and Yue (1985), Emmerhoff and
Sclavounos (1996) were carried out by approximating the hydrodynamic interaction, and most
studies assumed the bodies far apart. Recently, the importance of trapped modes in the design of
offshore structures supported by vertical cylindrical bodies was brought by Maniar and Newman
(1997). In these studies, the diffraction problem was a major concern.

The hydrodynamic interaction among multiple floating marine vehicles is also critical in their
operational aspect. Such examples are the wave interaction between twin hulls of catamaran-
type ships (Lee 1976), and two adjacent bodies (ship-ship or ship-platform) in on-loading or
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off-loading condition (Kim and Fang 1985, Fang and Kim 1986). Recently, as the Floating-
Production-Offloading-Storage (FPSO) system is getting popular for oil extraction in deep sea,
the wave interaction between FPSOs and shuttle tankers is of great interest for safe operation.

Numerical solutions of the associated linear or nonlinear boundary value problem can be
obtained by a three-dimensional method, especially using a frequency-domain approach (e.g.
WAMIT). The general manner of the frequency-domain approach is to solve the problem sepa-
rately for each body and combine these solutions. Today, the time-domain approach takes advan-
tage of the dramatic development of computing resources. The time-domain programs, e.g. LAMP
(Lin and Yue 1990) and SWAN (Nakos et al 1993), have many advantages in its application and
extension to engineering problems, therefore these are also applicable for the multi-body prob-
lem. Nevertheless, the application of a numerical method for multiple bodies is still expensive,
especially for the radiation problem of multiple floating bodies.

The present study considers the radiation problem of multiple floating bodies by a classical
technique, concentrating on the particular case of parallel slender bodies. When a body is enough
slender that the order of longitudinal disturbance is much smaller than that of transverse distur-
bance, a slender-body theory is a powerful tool to obtain an approximated solution. The particular
method applied in this study is unified theory. Unified theory is in the middle of strip theory
and a three-dimensional panel method. This theory has an advantage as a slender-body theory,
therefore sectional offset data can be directly applicable for the computation and the C.P.U. time is
much less than any three-dimensional method. Moreover, unified theory includes the leading-order
components of three-dimensional effect, so that its accuracy is comparable to a three-dimensional
method.

Unified theory was introduced for the radiation and diffraction problems in deep water by New-
man and Sclavounos (1978, 1980, 1985a). They extended and refined the previous slender-body
theories, e.g. Korvin-Kroukovsky (1955), Salvesen et al (1970), and Ogilvie and Tuck (1969),
and completed the foundation of unified theory. Recently, Kim and Sclavounos (1998) developed
a finite-depth unified theory. For catamarans, the deep-water unified theory was applied by Breit
and Sclavounos (1986}, and Kashiwagi (1993). This theory has been also applied to the computa-
tion of the second-order forces (Kim and Sclavounos 1998, Kim 2000).

In this paper, a unified theory is introduced for general problems of multiple bodies, which
is valid for both independently floating bodies and a single ship with multiple outriggers. There-
fore, the approach method is slightly different with previous studies for catamarans. In order to
observe the interaction of two bodies of catamarans, Breit and Sclavounos (1986) decomposed
the linear velocity potential into demi-hull component and additional contribution from the other
body, assuming the bodies are far enough apart to permit neglect of evanescent modes. In the case
of Kashiwagi’s study (1993), he applied the single-ship solution for the near-field solution, but the
far-field solution was written as the line distributions of source and dipole along two centerlines.
The present method assumes that the velocity potential is a sum of sub-problems as many as the
number of the bodies. In each sub-problem, the linear motion is imposed for one specific body and
no motion for the others. Then, the solution of each sub-problem includes the linear interaction
among the bodies, which is proportional to the motion amplitude of the specified body.

This paper introduces two application examples, two adjacent Series 60 hulls and trimarans.
Added-mass and damping coefficients are observed for heave and pitch motions, and both deep
water and finite depth are considered. The computational results are compared with those of a
three-dimensional panel method, showing an excellent agreement. The hydrodynamic coefficients
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Figure 1: Coordinate system

and motion RAQOs of trimarans are shown as an application for multimarans. For the trimarans, a
single-ship approach is applied. Four different arrangements of two sidehulls are considered, and
their results are compared.

2 Linear boundary value problem

Let’s consider multiple freely-floating bodies in the presence of incoming waves with no forward
speed. A Cartesian coordinate system in Figure 1 is fixed in space with the free surface taken at
z = 0, the positive z-axis pointing upwards, and the positive z-axis pointing forwards. Assume
that the bodies are under small amplitude harmonic motions in a monochromatic linear wave with
frequency w.

Then the body motion can be written as the following complex notation:

= Re{g)y) e} (M)

where 5;1? is the motion amplitude of O(¢). j = 1,2, 3 and 4, 5, 6 correspond to the translational
and rotational motions, and the superscript (n) is a body index. Now consider hydrodynamic force
due to body motion only, i.e. radiation force. Using a series expansion with respect to the motion
amplitudes, the hydrodynamic force of j mode on the (n)-th body can be written as follows:

F(n _ n) (¢ = S(n ) + Z ngrn)

m=1 k=1 agkm)

(S”)+O( ?) )

where S(" is the mean surface of the (n)-th body, and M is the number of the bodies. The first
expansion term is the force on the mean body position without motion. Obviously this term is

zero. The second term is the linear force which is proportional to the motion amplitude fgg).
8Fj(n) /OE ,(gm) indicates the force acting on the (n)-th body in j-direction due to unit-amplitude
motion of the (m)-th body in k-direction. As the second series term remains linear, all the body

motion except for the (m)-th body is restrained when 8Fj(n) / 85,8"') is associated. The additional
series are nonlinear terms and beyond our interest.
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To obtain the force component 8F / 3 (m) , the following boundary value problem for the
velocity potential, @y, (,,,), should be solved

V2® ;) =0 in fluid domain )
0Py (m) ® _ _
0Py (m) _ Jiwny, on the (m)-th body )
on 0 on other bodies
0V (m
5?’1( J—0  onz=-h (6)

where v = w?/g and g, h, ny, are the gravitational constant, water depth, and the normal vector
component, respectively. In addition, the radiation condition is essential in the far field.
The hydrodynamic force component is obtained by the integration of linear pressure. Adopting

the concept of hydrodynamic coefficient, 8F / 85 P ) can be written as

oF™
e

B —p/ L( | Py s = AT — iwB )

where A(" ") and B( ™) are the added mass and damping coefficient, respectively. The total
linear potentlal and hydrodynamlc force are finally obtained by solving 64 sub-problems, i.e.
sMandk=1,..,6in (3)~(6).

6 M
= Re{ Z Z g,‘c’j’g)@k,(m)eiwt} (8)

k=1m=1

k=1 m=1

When the bodies are connected like catamaran or trimaran, an[:l {wQAy;m) —in](.TL’m) }becomes
the radiation force which is considered in the equation of motion.

3 Unified slender-body theory for 8Fj(”) /O ,(Cm)

This study concentrates on a particular case that all floating bodies are slender and their longitudi-
nal centerlines are parallel. The bodies may have different body sizes and motion centers, but the
distance between the bodies is limited to the order of body beam. This section describes an exten-
sion of the single-body unified theory to the multi-body problem, and heave and pitch motions are
major interests.

4
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Figure 2: Sectional boundary value problem

3.1 Near-field solution

Let’s consider a transverse cut of multiple bodies at an arbitrary z-coordinate, as shown in Figure
2. When the bodies are slender, the orders of the flow gradient near the body in the longitudinal
and transverse directions are written as

0 o 0
O| — | <O ==, = 10
( 8x> < Oy’ 0z ) (19)
Then the boundary value problem of (3)~(6) is reduced to a two-dimensional problem. Now we
will consider a sub problem that the (m)-th body is under the forced motion in & direction (Figure
2).
Let ¢y, (m) the velocity potential which satisfies the two-dimensional boundary value problem
including the body boundary condition,

an

on

0Pk, (m) _JiwNg on the (m)-th body section
0 on other body sections

where Ny is the normal vector component on the two-dimensional section. ¢y, () is the solution
that strip method uses. Despite satisfying all the boundary conditions, gy, (,,) is not a complete
solution but a particular solution. Like a single-body case, the pure imaginary body boundary
condition suggests that ¢y, (,,) + 90;;7 (m) CaN be a homogeneous solution. Then the general solution
Gk, (m) is wrilten as

Ok (m) (2, Y5 2) = Pk (m) + Ch,(m) (T) (ke (m) + Pk (m)) (12)

where Cy () () is a complex constant which varies along z-axis, and the superscript * means
complex conjugate.
Similar to the single-body problem, the outer expansion of the near-field solution can be writ-
ten as
¢k,(m) Q‘“Dk,(m) (aj)G2D(y — Ym, Z)

. ) (13)
+ C’k,(m) (‘T){Dk,(m) ($)G2D(y — Ym, Z) + D]@(m) (ZC)GQD(y = Ym, Z)}

where

d
Dy (my (%) = 0 (m)(x) + Mk,(m)(ﬂf)a—y (14)
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Ok, (m) and fy, () are the strengths of the equivalent source and dipole located at (Y, 0). Ga2p(y, 2)
is the two-dimensional wave source (Wehausen and Laiton 1960, Eq.13.31 & 13.33). Equation
(11) indicates that the outer expansion of the near-field solution has the flow behavior of point
source and dipole. In the single-body problem which its geometry is symmetric on z-z plan, the
source is enough to represent the heave and pitch (i.e. symmetric) motions, and also the dipole
represents the sway and roll (i.e. anti-symmetric) motions. In the multi-body problem, both sin-
gularities should be considered as the interaction can have both behaviors. As a matter of fact,
equation (12) and (13) have the same forms with the single-body case. This is an advantage of
defining a sub problem.

In deep water, Newman (1978, VI-c) showed that, the leading-order solution of the antisym-
metric mode is the particular solution. This case simplifies (11) as follows:

Grey(m) RDr (m) () + Cr () (@O, () (2) + 0% () (@) G20 (Y = Y, 2)

N . (15)
= Ch(m) ()% (1) (@) G2D(Y — Y, 2) = Gap(y — Ym, 2)}

This is valid up to O{ Kr) where K is the wave number and r is a distance from (y,,, 0). For finite
depth, more careful observation is needed. In particular, equation (13) is not exactly true in the
limit case of shallow depth. This will be mentioned later.

Equation (12), corresponding to (15), is written as

P (m) R Phy(m) T C'k,(m)(:r){soﬁ/&) + (SOZU(TSL))*} (16)

where the superscript sym represents symmetric component.

3.2 Far-field solution

The solution in the far field located at a radial distance comparable to the body length takes the
form of the single body problem, so that it can be written as a line distribution of the three-
dimensional wave source and dipole along the centerline of the (m)-th body,

B, (m) :/ dX{pk,(m)(X)GSD(X —T,Y — Ym, 2)
L(m) (17)
15)
+ Qk,(m)(X)a_yGSD(X — 2,9 = Ym; Z)}

where p; (,,y and g; () are the strengths of three three-dimensional source G3p and dipole dG3p /0y
(Wehausen and Laiton 1960, Eq.13.17 & 13.19). Extracting the two-dimensional singularity, equa-
tion (17) can be rewritten as

¢/€,(m) = A(X)GQD(y = Ym, Z) + /L(k) dXA(X)H(X — T, Y — Ym, Z) (18)
where
1o}
A(X) = Pr,em)(X) + Qk,(m)(X)ady (19)
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H(JZ, Y, Z) = G3D(~'an, Z) - GQD(:U: Z) (20)

The inner expansion of the far-field solution can be obtained using the Taylor series expansion of
the integral term for small ¥ and z (Kim and Sclavounos 1998).

G omy =1A@) Gy — Y 2)} + /L A 2., 0)

o 9 @1
_ —_— A H — m _ p— O 2, 2
+/L(m) dx(yay +Z@z) COH (X = T, Ym» 2) ly=ymm z=0 +O(42, 2%)

For the source component, 9/dy becomes zero when y = 0. Moreover, when the singularity line
is distributed on z = 0, equation (21) can be simplified to

0
Bk, (m) Z{pk,(m)(l“)Gzp(y — Ym, 2) + Qk,(m)<x)‘8”?;G2D(y — Yms Z)}

(22)
[ b O 2= 90} + OT)
L(m)
3.3 Matching conditions
Matching two solutions, i.e. equation (15) and (22), leads the following three conditions:
i om) (2) + Com) (2){ 71 6m) (@) + T (@) } = Pk ) (@) (23)
b () + Ct iy () {1 0y (2) + 17,y (2) } = oy () (24)
—Ci () ()} oy (@) { G20y = s 2) = Gy = m 2) }
(25)

:/ dX{pk,(m)(X)H(X_xvy_ymao)}
L(m)

Three unknowns, . ;) (%), Gk, (m) () , and Cy () () can be obtained from above three matching
conditions.
In deep water, we can simplify the (24) and (25) as

1, (m) (T) = Qe (m) () (26)

~Co ) (#)07 @) { G2y = Yms 2) = G (y = yms ) |

27

=/ dx{pk,(m(x)H(x - l',ym,O)}

L{m)
In finite depth, the influence of a dipole is more complicated. Especially, in shallow water, a
source and a dipole have the same order of the leading terms (Tuck 1970). At a large y where the
evanescent modes are ignorable, the wave component of a point dipole in finite depth is written as
2_ 2

o KZ—v" ik

—Gaply, z) = sgn(y) cosh(Kh) cosh{ K (z + h)}—————hK2 Sy ve

oy (28)
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When K — 0,
v K?h 0 29
NN
- K (29)
Using these relations, it is easy to show
0 Gan(y,2) ~ sgnly) g + O) (30)
— z) = sgn(y)—
dy 2D\Y, any oh Y

The first term in the right-hand side is the potential jump across y = 0, which is inversely propor-
tional to the water depth. Lamb (1932, p.72) showed that the potential jump, C, due to a body of
its sectional area S in uniform flow between two side hulls is written approximately as
C =~ i? 31
where [ is the distance of the transverse boundaries. Since the dipole of its strength 1/27 can
be considered approximately as a circular cylinder of the radius b = /1/2, the potential jump
becomes
b2 1

Cr~ j:T = iﬂ 32)
Therefore, equation (30} is consistent with (32).

The first term in the right-hand side of (30) vanishes in deep water, however, in shallow water,
this term plays an important role as a leading-order term. When K — 0, two-dimensional flow
due to source and dipole in finite depth show the behaviors similar to uniform flow, i.e. diverging
flow by source and uni-directional flow by dipole. Therefore, the antisymmetric component is
important as much as the symmetric component. In the present study, the deep and moderate water
depths are of interest, so it is assume that this term does not provide a significant contribution.

Associated with source terms, eliminating Cj, (,,,)(z) in (22) and (27) leads to the integral
equation for py, ) (x). The integral equations for deep water and finite depth were introduced by
Newman(1978), and Kim and Sclavounos (1998), such that

1 Uk, m )
Ok (m) (@) = Prm)(2) = 5— (1 o ( )> (s () OO (7 + )]+
o (33)

1 0 TK
[ ] gsanta =0 mC |2 =X D500 - T RO = 0hk )

for deep water, and

(Kh/ cosh(Kh))2 O, (m) () /
_ : d .
ke (m) (Z) =P (m) () + 5T7ch 1+UZ @) Jr XPr,(m) (T = X)

Y B%—{ ~ oK ) + (K e =) = oba =20} G
-y e L Katmate = ) - ot 0

1m%h—|—v2h-v T M
n=
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for finite depth, where

Riz} =Yo(z) + 2iJo(| = |) + Ho(| z |) (35)
and
2
v=L = K tanh(Kh) = —m,, tan(my,h) (36)
g

Yy(z), Jo(z) and Ko(zx) are the Bessel functions of the zero-th order, and Hy(x) is the Struve
function. In addition, 6(z) is the delta function.

Pk, (m) () can be obtained by solving the integral (34) or (35), and subsequently Cy () (@) is
computed from

Die,(m) (T)
Ok (m)(T) + UZ,(m)(fE

Ck,(m) () = ) = Ok (m) (z) 37

The corresponding velocity potential is obtained from (16). Besides, the added mass and damping
coefficient are obtained from (7).

The linear equation of motion can be assembled by adding all the linear hydrodynamic forces,
inertia and restoring forces, such that

S [~ o) - ety - By Y] = X

forj =1,..,6,andn = 1,.., M , where m( ") R c(n) and X (n) are the mass, restoring force and
Jj= J.k 0 Tk

diffraction force components, respectlvely In a typical slender—body theory, two coupled equations
of motion are considered; couplings of heave-pitch and sway-yaw-roll. This study concentrates
on the heave and pitch motions for the application of unified theory.

4 Validation and application

4.1 Numerical method for strip-theory solution

The two-dimensional strip solution is essential for the application of unified theory. Many nu-
merical methods have been introduced for the two-dimensional boundary value problem, and it is
needless to say the details in this paper. The numerical method applied in this study is a boundary
integral method (BIM) based on wave Green function. In particular, the computer program of
Kim and Sclavounos (1998) has been extended to get rid of the irregular-frequency problem. The
solution grids have been distributed inside the body as well as the body surface.

To validate the developed program, the added-mass and damping coefficients have been ob-
served for two semi-submerged circular cylinders. Figure 3 shows two components (n =1, m =1
and n = 1, m = 2) and their sum. An adjacent cylinder of the same radius is located at the distance
of four times of diameter. Breit and Sclavounos (1986) introduced the total heave added mass and
damping coefficients for the same case, and the half of their results can be compared with the sum
of two components.
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Figure 3: Components of the sectional heave added-mass (a3 3) and damping coefficients
(b3,3) of two adjacent semi-submerged circular cylinders. B(diameter)/D(distance) =

4.0, agl D and bgl b, ; dashed line, a§13 ) and b(1 2. ; dash-dot line, a( 1) + ég ) and b(1 1)
b(1 2. ; dashed line, half of a twin-cylinder (Breit and Sclavounos 1986), X

In Figure 3, the first resonance can be found near wy/L/g = 0.7. This resonance has a
pumping behavior between two bodies, and becomes very complicated when the two bodies are
getting closer. Another strong resonance occurs near w+/L/g = 1.5 as the wavelength is close
to the distance of free surface between two bodies. Besides these resonances, the sum of two
components shows smooth variation, showing a very good agreement with the results of Breit
and Sclavounos (1986). However, in the frequency range of Figure 3, two components show
another spikes near w+/L/g = 1.1 and 1.8. In particular, the components have opposite signs
of change, so that the total quantities are not affected much. At these frequencies, wavelengths
are about half (wy/L/g = 1.1) and one and half (w/L/g = 1.8) of the distance of free surface

between two bodies. This results in 180-degree phase difference of two forces, 8F () / o0&, ) and

OF 2) /O, (1) , and consequently two components have opposite trends near these frequencies. The
sum of two components is important when the two bodies are connected and moves together, but
each component should be considered for independently floating bodies.

4.2 Two adjacent slender ships

For the application of the present theory to three-dimensional problems, it is necessary to divide
the strip solution into symmetric and anti-symmetric components. In particular, the symmetric
component is more important in the present approach to obtain Cy, (,,,) and consequently the com-
plete near-field solution. To minimize numerical effort for the decomposition, this study approx-
imates the symmetric component to the single-body solution. This approximation is valid when
the other bodies are not very close. The symmetric component can be decomposed further into a
component due to the single body under unit-amplitude motion and an additional component due

10
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Figure 4: Two adjacent Series 60 hulls; computational sections

to the existence of other body. In general, the single-body component is dominant. This concept
is similar to the method of Breit and Sclavounos (1986) for catamaran. However, it is obvious that
the current approximation has the limitation in considering the dipole behavior.

Numerical test has been carried out for two adjacent Series 60 hulls of the block coefficient
0.7. Figure 4 shows the strip sections of the two Series 60 hulls. Each ship has been represented
with 23 sections and about 30 segments per section. To get rid of irregular frequencies, three
pseudo panels have been added inside each section.

Figure 5 shows the heave and pitch added-mass and damping coefficients for D/L = 0.2. This
figure compares the solutions of three methods; slender-body theory (SBT) without C, (,,)(7)
correction, (i.e. strip solution) and with correction (i.e. unified theory), and a three-dimensional
panel method. The agreement between unified theory and the three-dimensional method is fair,
while the accuracy of strip method becomes poor at low frequency, as expected. A peak is found
near wy/L/g = 3.0, and this is the first resonance described in Figure 3. This resonance effect
becomes stronger as the gap between two ships are closer, and wave run-up as well as interaction
force is an important factor for ship design. The position of peak predicted by unified theory shows
a slight difference with the three-dimensional solution, and this is due to the lack of considering
the influence of other body, especially missing antisymmetric component. This is the limitation of
the present approximation.

This computation has been carried out using a PC equipped with a Pentium 4 process of 1.4
G Hz. For a single wave frequency, it took about 2-3 seconds to obtain the unified theory solution
and faster for strip method, while about 3 minutes for the three-dimensional method.

The heave added-mass and damping coefficients for different water depths are shown in Figure
6. Figure (a) and (b) are the diagonal terms, i.e. m = n = 1, and both the added-mass and damp-
ing coefficients show the same trend with the single-body problem (Kim and Sclavounos 1998).
However, at very low frequencies, the present method does not provide reliable solutions for the
off-diagonal terms, i.e. m = 2 and n = 1, particularly for wave damping. As explained above,
this is due to the shallow-depth effects of the anti-symmetric modes. Although the diagonal com-
ponents look fine as the symmetric mode is dominant, but the same accuracy cannot be expected
for the off-diagonal components when X' — 0.

11
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4.3 Multimaran - Single-Body Approach

The present method is also useful for multimarans. For instant, a catamaran can be considered as a
particular case of the previous application for two bodies. Recently, ships with more than two bod-
ies, e.g. trimaran and pentamaran, are of great interest for both military and commercial purposes.
In general, these ships have multiple sidehulls much smaller than the main body. Furthermore, the
distance between the main body and the sidehulls is the order of ship beam.

The present study has been extended to the seakeeping problem of trimaran ships, although
the forward speed is not considered. In particular case that all bodies are moving together and
the sidehulls are close to the main body, it is not necessary to solve the sub problems to obtain
individual interaction components. Treating all the sections as a part of one single ship (not a

13
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(a) Aft-in (b) Aft-out

(¢) Fwd-in (d) Fwd-out

Figure 7: Four models of trimaran

single body) is more efficient than computing all components. Figure 7 shows four trimaran ships
with the sidehulls of different longitudinal and transverse locations (Harris 1999, Kim and Weems
2000). The present method has been applied to the prediction of the hydrodynamic coefficients
and motion RAOs of these ships. The computation has been carried out for a light load condition
which the ship length of load waterline, beam and draft are 128.27 m, 9.75 m and 4.5 m, for
the main hull, and 36.17 m, 2.80 m, and 2.74 m for one sidehull. The combinations of two
longitudinal (fwd and aft) and two transverse (in- and out-board) positions for the sidehulls are
considered. Especially, the distance between the centerlines of the main hull and the inboard and
outboard sidehulls are 9.75 m and 19.51 m, respectively.

The heave added-mass and damping coefficients of the aft-out mode (Figure 7(b)) are plotted
in Figure 8, showing the comparison with the three-dimensional panel method. As expected, the
agreement is excellent. Figure 9 shows the heave and pitch added-mass and damping coefficients
of the four models. From this figure, it is observed that both the transverse and longitudinal lo-
cations of the sidehulls are important. The heave force seems more sensitive to the transverse
position of the sidehulls rather than the longitudinal position. This indicates that the wave res-
onance between the main hull and the sidehulls plays an important role in the heave force. On
the other hand, the pitch added-mass and damping coefficients are significantly sensitive to the
longitudinal position. Owing to larger moment arm, the pitch moment of the aft-sidehull trimaran
is more sensitive to a change of the heave force than the fwd-sidehull trimarans. This sensitivity
is obvious in figure (c) and (d).

This computation has been extended to the motion RAOs. The wave excitation forces and
moments have been obtained using a far-field Haskind relation. Sclavounos (1985a) suggested the
far-field formula for the diffraction force on a slender body, and Breit and Sclavounos (1986) in-
troduced a rational approach to approximate the solution of diffraction problem using a technique

14
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similar to the radiation problem. Besides, Kim and Sclavounos (1997) showed that the far-field
formula provides more accurate excitation forces and moments than the near-field Haskind relation
in the application of slender-body theory.

Figure 10 shows the heave and pitch RAOs at head sea. The agreement of the motion RAOs
between unified theory and the three-dimensional panel method is fair. The agreement of phase
difference is also excellent. In this problem, strip theory overpredicts the motion RAOs, especially
for the trimarans with the in-board sidehulls. Therefore, the application of strip theory for multi-
hull ships is not reliable as much as for mono-hull ships.

S Summary

In the present study, unified theory has been extended for the radiation problem of multi floating
bodies. The linear radiation force on each body has been decomposed into as many as the number
of the bodies, and the sub-problem has been solved for each component. The unified theory for the
mono-hull problem has been extended for each sub-problem. The application models are adjacent
Series 60 hulls and trimarans. The added-mass and damping coefficients have been compared with
the results of a three-dimensional panel method, showing a good agreement. It has been found that
the present theory is not valid in very shallow water, but the unified theory provides reliable and
accurate solutions in overall frequency range for deep water and not extremely shallow depth.

References

BAI, K.J. AND YEUNG R.W. 1974 Numerical solutions to free surface problems. Proc. 10th
Symposium on Naval Hydrodynamics, Arlington, VA, pp. 609-648

BORRESEN, R. 1984 The unified theory of ship motions in water of finite depth, Ph.D. Thesis,
The Norwegian Institute of Technology

BREIT, S.B. AND SCLAVOUNOS, P.D. 1986 Wave interaction between adjacent slender bodies.
J. of Fluid Mechanics, 165, pp. 273-296

EMMERHOFF, O.J. AND SCLAVOUNOS, P.D. 1996 The slow-drift motion of arrays of vertical
cylinders. J. of Fluid Mechanics, 242, 31, pp. 31-50

FANG, M.C. AND KiM, C.H. 1986 Hydrodynamically coupled motions of two ships advancing
in oblique waves. J. of Ship Research, 30, pp. 159-171

FRANK, W. 1967 Oscillation of cylinders in or below the free surface of deep fluids, Report
2375, David W. Taylor Naval Ship Research and Development Center

HARRIS, N. 1999 Effective horsepower and seakeeping tests on a trimaran model. Report
EW-01-99, United States Naval Academy, Annapolis, MD.

KAGEMOTO, H. AND YUE, D.K.P. 1985 Wave forces on multiple leg platforms. Proc. BOSS
’85, Delft, The Netherlands, pp. 751-762

KASHIWAGI, M. 1993 Heave and pitch motions of a catamaran advancing in waves. Proc.
FAST’93, Yokohama, Japan, pp. 648-655

KiM, C.H. AND FANG, M.C. 1985 Vertical relative motion between two longitudinally parallel
adjacent platforms in oblique waves. Proc. 4th OMAE, 1, pp. 114-124

17



Y.-H. Kim: Unified Theory for the Radiation Problem ...

KIM Y. AND SCLAVOUNOS P.D. 1997 The computation of the second-order hydrodynamic
forces on a slender ship in waves. Proc. 12th International Workshop on Water Waves and
Floating Bodies, Marseuille, France, pp. 139-142

KIM, Y. AND SCLAVOUNOS, P.D 1998 A finite-depth unified theory for linear and second-order
problems of slender ships. J. of Ship Research, 42, pp. 297-306

KiMm, Y. AND WEEMS, K. 2000 Motion responses of the high-speed crafts in regular and
random waves. Proc. RINA, High-Speed Craft Conference for wake-wash & Motion control,
London, UK.

KM, Y. 2000 Computation of the linear and nonlinear hydrodynamic forces on slender ships
with zero speed in waves: infinite-depth case. J. the Society of Naval Architects of Korea, 37,
pp. 1-13

KORVIN-KROUKOVSKY, B.V. 1955 Investigation of ship motions in regular waves, Trans.
SNAME, English Trans. , 85, pp. 590-632

LAaMB, H. 1932 Hydrodynamics. Dover, New York

LEE, C.M. 1976 Theoretical prediction of motion of small-waterplane-area, twin-hull (SWATH)
ships in waves. Report 76-0046, David W. Taylor Naval Ship Research and Development
Center.

LIN, W.M. AND YUE, D.K.P. 1990 Numerical solutions for large-amplitude ship motions in
the time-domain. Proc. 18th Symposium on Naval Hydrodynamics, Ann Arbor, ML, pp. 41-66

MANIAR, H.D. AND NEWMAN, J.N. 1997 Wave diffraction by a long array of cylinders. J. of
Fluid Mechanics, 339, pp. 309-330

Nakos, D.E., KRING, D.G., AND SCLAVOUNOS, P.D. 1993 Rankine panel methods for
transient free surface flows. Proc. 6th Numerical Ship Hydrodynamics, lowa City, 1A, pp.
613-634

NEWMAN, J.N. 1978 The theory of ship motions. Advanced Applied Mechanics, 18, pp.
221-283

NEWMAN, J.N. AND SCLAVOUNOS, P.D. 1980 The unified theory for ship motions. Proc.
13th Symposium on Naval Hydrodynamics, Tokyo, Japan, pp. 1-22

OGILVIE, T.F. AND Tuck, E.O. 1969 A rational strip theory of ship motions. Part I, Report-
013, Dept of Naval Architecture and Marine Engineering, University of Michigan

OHKUSU, M. 1974 Hydrodynamic forces on multiple cylinders in waves. Proc. International
Symposium in the Dynamics of Marine Vehicles and Structures in Waves, Institute of Me-
chanical Engineers, pp. 107-112

PRUDNIKOV, A.P., BRYCHKOV, Y.A. AND MARICHEV, O.I. 1986 Integrals and Series.1.
Grodon and Breach Science Publishers, New York

SALVESEN, N., TUCK, E.O. AND FALTINSEN, O.M. 1970 Ship motions and sea loads. Trans.
SNAME, 78, pp. 250-287

SCLAVOUNOS, P.D. 1984 The diffraction of free-surface waves by a slender ships. J. of Ship
Research, 28, pp. 29-47

SCLAVOUNOS, P.D. 1985a Forward speed vertical wave exciting forces on ships in waves. J.
of Ship Research, 29, pp. 105-111

SCLAVOUNOS, P.D. 1985b Users Manual of NIIRID: a general purpose program for wave-body
interactions in two dimensions. Dept. of Ocean Engineering, MIT.

SPRING, B.H. AND MONKMEYER, P.L. 1974 Interaction of plane waves with vertical cylinders.
Proc. 14th International Conference on Coastal Engineering, chapter 107, pp. 1829-1845

18



Y.-H. Kim: Unified Theory for the Radiation Problem ...

Tuck, E.O. 1970 Ship motions in shallow water. J. of Ship Research, 14, pp. 317-328

WEHAUSEN, J.V. AND LAITONE, E.V.
446-778

1960 Surface waves. Handbuch der Physic, 9, pp.

19



