화학적 및 전기화학적 방법으로 합성한 연신성 폴리피롤 필름의 특성

Characterization of Stretchable Polypyrrole Films Prepared by Chemical and Electrochemical Method

  • 발행 : 2003.07.01

초록

기능성 도핑제인 di(2-ethylhexyl) sulffsuccinate sodium salt (NaDEHS)을 사용하여 화학적, 전기화학적 방법에 의한 연신성 폴리피롤을 합성하였다. 화학적, 전기화학적 방법에 의해 제조된 폴리피를 필름은 구역 연신 방법을 사용하여 1.0∼2.5배 연신시킬 수 있었으며, 연신된 폴리피를 필름의 전기 전도도를 측정하였다. 연신율이 증가함에 따라 필름의 전기 전도도는 증가함을 볼 수 있었다. 이러한 현상은 연신율에 따른 결정성 증가로 설명할 수 있었다. 온도변화에 따른 전하 이동 경로는 1.0-2.0배 연신된 폴리피롤의 경우 3차원 variable range hopping모델, 2.5배 연신된 폴리피롤의 경우 1차원 VHR모델에 적합함을 볼 수 있었다.

Stretchable Polypyrrole films using functionalized doping agent, di(2-ethylhexyl) sulfosuccinate sodium salt (NaDEHS), were synthesized by chemical and electrochemical method. Chemically and electrochemically Prepared Polypyrrole films were stretch-oriented (L/L$\_$0/= 1.0 ∼ 2.5) by zone drawing method and the electrical conductivities were measured. As the draw ratio was increased, the electrical conductivities were increased. This result was confirmed by the increase in crystallinity through the increase in draw ratio. The temperature dependence of electrical conductivity showed that 3D-variable range hopping model (L/L$\_$0/ = 1.0∼2.0) and ID-VRH model (L/L$\_$0/ = 2.5) gave the best fit to the data for stretched Ppy-DEHS films.

키워드

참고문헌

  1. Compfes Rendus v.C267 A.Dall'olio;Y.Dascola;V.Varaca
  2. Synth. Met. v.31 S.Machida;S.Miyata;T.Techagumpuch https://doi.org/10.1016/0379-6779(89)90798-4
  3. J. Chem. Soc. A.F.Diaz;K.K.Kanazawa;G.P.Gardini
  4. Synth. Met. v.84 M.A.Diaz;B.J.Schwartz;M.R.Anderson;A.J.Heeger https://doi.org/10.1016/S0379-6779(97)80829-6
  5. J. Chem. Phys. v.80 P.Pfluger;G.B.Street https://doi.org/10.1063/1.446428
  6. J. Vac. Sci. Technol. v.6 A.J.Nelson;S.Glenis;A.J.Frank
  7. J. Chem. Phys. v.79 K.Yakushi;L.J.Lauchlan;T.C.Clake;G.B.Street https://doi.org/10.1063/1.445621
  8. J. Vac. Sci. Technol. v.6 A.J.Nelson;S.Glenis;A.J.Frank
  9. Chem. Mater v.6 D.M.Collard;M.S.Stoakes https://doi.org/10.1021/cm00042a025
  10. Synth. Met. v.41 Y.A.Bubitsky;B.A.Zhubanov;G.G.Maresch https://doi.org/10.1016/0379-6779(91)91085-O
  11. Synth. Met. v.32 S.Rapi;V.Bochi;G.P.Gardini https://doi.org/10.1016/0379-6779(89)90777-7
  12. SIC Surf. Interface Anal. v.11 M.V.Zeller;S.J.Hahn https://doi.org/10.1002/sia.740110610
  13. Macromolecules v.26 S.A.Chen;C.S.Liao https://doi.org/10.1021/ma00063a027
  14. J. Am. Chem. Soc. v.109 S.Chao;M.S.Wrighton https://doi.org/10.1021/ja00241a057
  15. Chem. Mater. v.6 D.M.Collard;M.S.Stoakes https://doi.org/10.1021/cm00042a025
  16. Electronic Properties of Confugated Polymers P.Audebert;G.Bidan;M.Lapkowski;D.A.Seanor
  17. Synth. Met. v.72 D.Y.Kim;J.Y.Lee;C.Y.Kim;E.T.Kang;K.L.Tan https://doi.org/10.1016/0379-6779(95)03286-X
  18. Synth. Met. v.74 J.Y.Lee;D.Y.Kim;C.Y.Kim https://doi.org/10.1016/0379-6779(95)03359-9
  19. Synth. Met. v.119 E.J.Oh;K.S.Jang https://doi.org/10.1016/S0379-6779(00)01000-6
  20. Synth. Met. v.119 K.S.Jang;S.S.Han;J.S.Suh;E.J.Oh https://doi.org/10.1016/S0379-6779(00)01011-0
  21. Synth. Met. v.125 E.J.Oh;K.S.Jang;A.G.Macdiarmid https://doi.org/10.1016/S0379-6779(01)00384-8
  22. J. Chem. Phys. v.78 P.Pfluger; M.Krounbi;G.B.Street;G.Weiser https://doi.org/10.1063/1.445237
  23. Synth. Met. v.117 J.Joo; J.K.Lee;E.J.Oh;A.J.Epstein https://doi.org/10.1016/S0379-6779(00)00537-3
  24. Electronic Processes in Non-Crystalline Materials N.F.Mott;E.Davis