DOI QR코드

DOI QR Code

Diagnosis of Deterioration Grades for Overhead Transmission Lines using Adaptive Neuro-Fuzzy Inference System

적응 뉴로퍼지 추론시스템을 이용한 가공 송전선의 열화등급 진단

  • 김성덕 (한밭대학교 전기·전자·제어공학부) ;
  • 이상래 (한밭대학교 전기·전자·제어공학부)
  • Published : 2003.07.01

Abstract

Aluminum Stranded Conductors Steel Reinforced (ACSR) in overhead transmission lines have slowly degraded due to pollutants in the air for a long period of time, so in the 2000, a number of them has been exceeded over their forecasted useful life. Since most of them are faced with assessment their present conditions in regard to economical maintenance, in this paper, we have suggested a method in order to evaluate the current condition of aged conductors by using dominant parameters such as elapsed years, environment index, and conductor configuration. A diagnostic system for predicting the deterioration grades corresponding to the lifetime of aged conductors is described, which is designed as an Adaptive Neuro-fuzzy Inference System (ANFIS) based on knowledge and experiences of experts. Applying this diagnostic system to practical transmission lines in domestic, it is shown that the system can be effectively used as a guide to perform nondestructive diagnosis and economical operation for old ACSR conductors.

가공 송전선로의 아연도금 강심 알루미늄연선 도체들은 장기간 동안 대기오염에 의해 서서히 열화되었기 때문에, 2천년 대에 이르러 수많은 도체들이 예상된 유효수명을 초과하였다. 대부분의 도체들은 경제적인 운용 측면에서 현재 상태들을 평가하지 않으면 안되므로, 이 논문에서는 경년, 환경지표, 및 도체구조와 같은 중요 파라미터들을 사용하여 노화도체의 현재 상태를 평가하기 위한 방법을 제안하였다. 노화도체의 수명에 대응하는 열화등급을 예측하기 위한 진단 방법을 기술하였으며, 이 시스템은 전문가 지식과 경험을 토대로 적응 뉴로퍼지 추론시스템 (Adaptive Neuro-Fuzzy Inference System)으로 설계하였다. 이 진단시스템을 국내의 송전선로에 적용하여, 이 시스템이 노화 ACSR 도체를 비파괴적으로 진단하고 경제적으로 운용하기 위한 방안으로서 효과적으로 사용될 수 있음을 밝혔다.

Keywords

References

  1. D.L. Rudolph, “A systematic approach to the replacement of an aging distribution system”, 1997 IEEE Rural Electric Power Conference, A4.1-8, Minneapolis MN, 1997. https://doi.org/10.1109/REPCON.1997.595590
  2. D.G. Harvard et al, “Aged ACSR conductors II: Prediction of remaining life”, IEEE Trans. on Power Delivery, Vol. 7, No. 2, pp. 582-595, 1992. https://doi.org/10.1109/61.127053
  3. R.L. Jackson, R.R. Gibbon, J.M. Ferguson and K.G. Lewis, “The Condition of the supergrid and a strategy for refurbishment”, International Conference on Revitalizing Transmission and Distribution ystems, pp. 44-48, 1987.
  4. D.R. Shannon, Life Expectancy of ACSR Conductors under Live Line and Off-Line Conditions, Shannon Tech. Corp., Technical Report, http://www.shannontechnology.com /corrosion.html.
  5. M.F. Ishac, I.F. Boulos, A.P. Goel and D.J. Horrocks, “Life extension of an existing transmission line”, The Seventh international Conference on Transmission and Distribution Construction and Live Line Maintenance, pp. 17-23, Ohio, OH, 1995.
  6. J. Sutton and K.G. Lewis, “The detection of internal corrosion in steel reinforced aluminum overhead power line conductors”, U.K. Corrosion, pp.343-359, 1986.
  7. Internal Corrosion Detector using Eddy Current Method in Transmission Lines, Tohoku Electric Power Co. and Fujikura Research Center, Technical Report, 1992.
  8. J.S.R. Jang, C.T. Sun, and E. Mizutani, Neuro-fuzzy and Soft Computing : A Computational Approach to Learning and Machine Intelligence, Prentice_Hall, 1997.
  9. L.I. Persson, “Corrosion attack in mid-span joints in ACSR transmission conductors”, CIRED 1989, 10th International Conf. on Electricity Distribution, Vol. 3, pp. 259-261, 1989.
  10. K. Adomah, Y. Mizuno and K. Naito, “Probabilistic assessment of the reduction in tensile strength of an overhead transmission lines conductor with reference to climatic data”, IEEE ESMO 98 Proceedings, pp. 161-166, Orlando, FL, 1998. https://doi.org/10.1109/TDCLLM.1998.668348