An Adaptive Mesh-Independent Numerical Integration for Meshless Local Petrov-Galerkin Method

  • Cho, Jin-Yeon (Department of Aerospace Engineering, College of Engineering, Inha University) ;
  • Jee, Young-Burm (Department of Aerospace Engineering, College of Engineering, Inha University)
  • Published : 2003.07.01

Abstract

In this paper, an adaptive numerical integration scheme, which does not need non-overlapping and contiguous integration meshes, is proposed for the MLPG (Meshless Local Petrov-Galerkin) method. In the proposed algorithm, the integration points are located between the neighboring nodes to properly consider the irregular nodal distribution, and the nodal points are also included as integration points. For numerical integration without well-defined meshes, the Shepard shape function is adopted to approximate the integrand in the local symmetric weak form, by the values of the integrand at the integration points. This procedure makes it possible to integrate the local symmetric weak form without any integration meshes (non-overlapping and contiguous integration domains). The convergence tests are performed, to investigate the present scheme and several numerical examples are analyzed by using the proposed scheme.

Keywords

References

  1. Atluri, S.N., Cho, J.Y. and Kim, H.G., 1999, 'Analysis of Thin Beams, Using the Meshless Local Petrov-Galerkin Method, with Generalized Moving Least Squares Interpolations,' Comp. Mech., Vol. 24, pp. 334-347 https://doi.org/10.1007/s004660050456
  2. Atluri, S.N., Kim, H.G. and Cho, J.Y., 1999, 'A Critical Assessment of the Truly Meshless Local Petrov-Galerkin(MLPG), and Local Boundary Integral Equation(LBIE) methods,' Comp. Mech., Vol. 24, pp. 348-372 https://doi.org/10.1007/s004660050457
  3. Atluri, S.N. and Zhu, T., 1998a, 'A New Meshless Local Petrov-Galerkin(MLPG) Approach in Computational Mechanics,' Comp. Mech., Vol. 22, pp. 117-127 https://doi.org/10.1007/s004660050346
  4. Atluri, S.N. and Zhu,T., 1998b, 'A new meshless local Petrov-Galerkin(MLPG) Approach to Nonlinear Problems in Computer Modeling and Simulation,' Comput. Modeling Simul. Eng., Vol. 3, pp. 187-196
  5. Babuska, I. and Melenk, J., 1997, 'The Partition of Unity Method,' Int. J. Num. Meth. Eng., Vol. 40, pp. 727-758 https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
  6. Belytschko, T., Lu, Y.Y. and Gu, L., 1994, 'Element-free Galerkin Methods,' Int. J. Num. Meth. Eng., Vol. 37, pp. 229-256 https://doi.org/10.1002/nme.1620370205
  7. De, S. and Bathe, K.J., 2001, 'Towards an Efficient Meshless Computational Technique : the Method of Finite Spheres,' Eng. Comp., Vol. 18, pp. 170-192 https://doi.org/10.1108/02644400110365860
  8. Duarte, C.A. and Oden, J.T., 1996 'An h-p Adaptive Method Using Clouds,' Comp. Meth. Appl. Mech. Eng., Vol. 139, pp. 237-262 https://doi.org/10.1016/S0045-7825(96)01085-7
  9. Lancaster, P. and Salkauskas, K., 1981, 'Surfaces Generated by Moving Least Squres Methods,' Math. Comp., Vol. 37, pp. 141-158 https://doi.org/10.2307/2007507
  10. Liu, W.K., Jun, S. and Zhang, Y., 1995, 'Reproducing Kernel Particle Methods,' Int. J. Num. Meth. Fluids, Vol. 20, pp. 1081-1106 https://doi.org/10.1002/fld.1650200824
  11. Liu, W.K., Chen, Y., Chang, C.T. and Belytschko, T., 1996, 'Advances in Multiple Scale Kernel Particle Methods,' Comp. Mech., Vol. 18, pp. 73-111 https://doi.org/10.1007/BF00350529
  12. Lucy, L.B., 1977, 'A Numerical Approach to the Testing of the Fission Hypothesis,' The Astro. J., Vol. 8, pp. 1013-1024 https://doi.org/10.1086/112164
  13. Nayroles, B., Touzot, G. and Villon, P., 1992, 'Generalizing the Finite Element Method:Diffuse Approximation and Diffuse Elements,' Comp. Mech., Vol. 10, pp. 307-318 https://doi.org/10.1007/BF00364252
  14. Organ, D., Fleming, M., Terry, T. and Belytschko, T., 1996, 'Continuous Meshless Approximations for Nonconvex Bodies by Diffraction and Transparency,' Comp. Mech., Vol. 18, pp. 225-235 https://doi.org/10.1007/BF00369940
  15. Onate, E., Idleshon, S., Zienkiewicz, O.C. and Taylor, R.L., 1996, 'A Finite Point Method in Computational Mechanics;Applications to Convective Transport and Fluid Flow,' Int. J. Num. Meth. Eng., Vol. 39, pp. 3839-3866 https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
  16. Shepard, D., 1968, 'A Two-Dimensional Function for Irregularly Spaced Data,' Proceeding of ACM National Conference, pp. 517-524
  17. Zhu, T. and Atluri, S.N., 1998, 'A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method,' Comp. Mech., Vol. 21, pp. 211-222 https://doi.org/10.1007/s004660050296
  18. Zhu, T., Zhang, J.D. and Atluri, S.N., 1998a, 'A Local Boundary Integral Equation (LBIE) Method in computational Mechanics, and a Meshless Discretization Approach,' Comp. Mech., Vol. 21, pp. 223-235 https://doi.org/10.1007/s004660050297
  19. Zhu, T., Zhang, J.D. and Atluri, S.N., 1998b, 'A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems,' Comp. Mech., Vol. 22, pp. 174-186 https://doi.org/10.1007/s004660050351
  20. Comp. Mech. v.21 A Local Boundary Integral Equation (LBIE) Method in computational Mechanics, and a Meshless Discretization Approach Zhu,T.;Zhang,J.D.;Atluri,S.N. https://doi.org/10.1007/s004660050297
  21. Comp. Mech. v.22 A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems Zhu,T.;Zhang,J.D.;Atluri,S.N. https://doi.org/10.1007/s004660050351