DOI QR코드

DOI QR Code

난류채널유동의 라그란지안 해석 (II) - 라그란지안 통계분석 -

Lagrangian Investigation of Turbulent Channel Flow (II) - Analysis of Lagrangian Statistics -

  • 최정일 (연세대학교 기계공학과, 청정기술연구단) ;
  • 이창훈 (연세대학교 기계공학과)
  • 발행 : 2003.07.01

초록

The Lagrangian dispersion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Four points Hermite interpolation in the homogeneous direction and Chebyshev polynomials in the inhomogeneous direction is adopted to simulate the fluid particle dispersion. An inhomogeneity of Lagrangian statistics in turbulent boundary layer is investigated by releasing many particles at several different wall-normal locations and tracking those particles. The fluid particle dispersions and Lagrangian structure functions of velocity are scaled by the Kolmogorov similarity. The auto-correlations of velocity and acceleration are shown at the different releasing locations. Effect of initial particle location on the dispersion is analyzed by the probability density function at the several downstreams and time instants.

키워드

참고문헌

  1. Armenio, A., Piomelli, U. and Fiorotto, V., 1999, 'Effect of the Subgrid Scaless on Particle Motion,' Phys. Fluids, Vol. 11, No. 10, pp. 3030-3042 https://doi.org/10.1063/1.870162
  2. Domgin, J.F., Huilier, D., Burnage, H. and Gardin, P., 1997, 'Coupling of a Lagrangian model with a CFD Code: Application to the Numerical Modeling of the Turbulent Dispersion of Droplets in a Turbulent Pipe Flow,' J. Hydraul. Res., Vol. 35, No. 4, pp. 473-490 https://doi.org/10.1080/00221689709498406
  3. Yeung, P.K., 2002, 'Lagrangian Investigations of Turbulence,' Ann. Rev. Fluid Mech., Vol. 34, pp. 114-142 https://doi.org/10.1146/annurev.fluid.34.082101.170725
  4. Yeung, P.K., 1997, 'One- and Two-particle Lagrangian Acceleration Correlations in Numerically Simulated Homogenous Turbulence,' Phys. Fluids, Vol. 9, No. 10, pp. 2981-2990 https://doi.org/10.1063/1.869409
  5. Shen, P. and Yeung, P.K., 1997, 'Fluid Particle Dispersion in Homogenous Turbulent Shear Flow,' Phys. Fluids, Vol. 9, No. 11, pp. 3472-3484 https://doi.org/10.1063/1.869456
  6. Yeung, P.K. and Pope, S.B., 1988, 'An Algorithm for Tracking Fluid Particles in Numerical Simulation of Homogenous Turbulence,' J. Comp. Phys., Vol. 79, pp. 373-416 https://doi.org/10.1016/0021-9991(88)90022-8
  7. Yeung, P.K. and Pope, S.B., 1989 'Lagrangian Statistics from Direct Numerical Simulations of Isotropic Turbulence,' J. Fluid Mech., Vol. 207, pp. 531-586 https://doi.org/10.1017/S0022112089002697
  8. Vedula, P. and Yeung, P.K., 1999, 'Similarity Scaling of Acceleration and Pressure Statistics in Numerical Simulations of Isotropic Turbulence,' Phys. Fluids, Vol. 11, No. 5, pp. 1208-1220 https://doi.org/10.1063/1.869893
  9. Sawford, B.L. and Yeung, P.K., 2001, 'Lagrangian Statistics in Uniform Shear Flow: Direct Numerical Simulation and Lagrangian Stochastic Models,' Phys. Fluids, Vol. 13, No. 9, pp. 2627-2634 https://doi.org/10.1063/1.1388539
  10. Lee, C., Kim, B. and Kim, N., 2000, 'A Simple Lagrangian PDF Model for Wall- Bounded Turbulent Flows,' KSME Int. J., Vol. 14, No. 8, pp. 900-911 https://doi.org/10.1007/BF03184478
  11. Lee, C., Kim,B. and Kim, N., 2001, 'A Lagrangian Stochastic Model for Turbulent Dispersion,' KSME Int. J., Vol. 15, No. 12, pp. 1683-1690
  12. Iliopoulos, I. and Hanratty, T., 1999, 'Turbulent Dispersion in a Non-homogeneous Field,' J. Fluid Mech., Vol. 392, pp. 45-71 https://doi.org/10.1017/S0022112099005431
  13. Kim, J., Moin, P. and Moser, R., 1987, 'Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,' J. Fluid Mech., Vol. 177, pp. 133-166 https://doi.org/10.1017/S0022112087000892
  14. Choi, J.-I., Lee, C., 2003, 'Lagrangian Investiagation of Turbulent Channel Flow - (I) An Assessment of Particle Tracking Algorithms,' KSME, submitted https://doi.org/10.3795/KSME-B.2003.27.7.859
  15. Kontomaris, K., Hanratty, T.J. and Mclaughlin, J.B., 1992, 'An Algorithm for Tracking Fluid Particles in a Spectral Simulation of Turbulent Channel Flow,' J. Comp. Phys., Vol. 103, pp. 231-242 https://doi.org/10.1016/0021-9991(92)90398-I
  16. Pope, S.B., 2000, Turbulent Flows, Cambridge University Press
  17. Monin, A.S. and Yaglom, A.M., 1975, Statistical Fluid Mechanics, MIT Press
  18. Porta, A. La, Voth, G.A., Crawford, A.M., Alexander,J. and Bodenschatz, E., 2001 'Fluid Particle Accelerations in Fully Developed Turbulence,' Nature, Vol. 409, pp. 1017-1019 https://doi.org/10.1038/35059027
  19. Borgas, M.S. and Sawford, B.L., 1991, 'The Small-Scale Structure of Acceleration Correlations and Its Role in the Statistical Theory of Turbulent Dispersion,' J. Fluid Mech., Vol. 228, p. 295 https://doi.org/10.1017/S0022112091002719
  20. Tennekes, H. and Lumley, J.L., 1978, A First Course in Turbulence, MIT Press
  21. Xu, C., Zhang, Z., den Toonder, J.M.J., and Nieuwstadt, F.T.M, 1996, 'Origin of High Kurtosis Levels in the Viscous Sublayer,' Phys. Fluids, Vol. 8, pp. 1938-1944 https://doi.org/10.1063/1.868973
  22. Silverman, B.W., 1986, Density Estimation for Statistics and Data Analysis, Chapman & Hall