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1. Introduction the system is perfectly repaired with probability Pr[N= k]

or is minimally done with probability 1 —Pr{N= £]. When

Minimal and perfect repair are useful assumptions for g system fails, it is perfectly or minimally repaired with
mathematical models to represent practical maintenance  probability Pr[N= %] or 1 — Pr[N= £l respectively.

activities. The minimal repair means that the failed system In this paper, we consider an imperfect repair [5]

recovers its function properly but carries its age, while the where, at the k-th failure, the system is perfectly repaired

perfect repair restores entire system into the new condition with probability Pr[N=#] or is minimally done with

so that it behaves as a new system. Barlow and Hunter 1—Pr[N=4k]. The random variable N represent the

[1] proposed the maintenance problem with minimal repairs number of failures between consecutive perfect repairs. We

between planned replacements, and derived planned re- investigate the properties of the distribution of time be-

placement period 7" which minimizes the total long-run tween perfect repairs and its hazard rate function. In two

expected cost per system time. Uematsu, Ohi, Kowada, and replacement models, it is introduced that the cost of im-

Nishida [7] introduced the random variable N which treats perfect repair is random variable and depends on age of

the number of failure between consecutive perfect repairs, ie., the system. And the time required for performing main-
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tenance activities are negligible. We discuss the planned
replacement period which minimizes the total expected cost
per unit time in the steady state.

2. Formulation of Models

Let X, be the interval time between (%&— 1)-st mini-
mal repair and k-th one and Ax, -, x,) be the com-

mon probability density function of the random vector

(X,,,X,). We define the partial sums such that
N
TN = ZZIXI ......................................................................... (1)
where T,=0. T, may be called the real age of the

system at the N-th failure as it is the elapsed time since

the system was put in operation. It is easy to see that
PI’[N( t)Zk] — Pr[ TkS t] ............................................... (2)
By conditioning on N,

Fy() =Pr[Ty >4
- SOPr[TN >t| N=Pr[N= ]

= zoPr[T, > AAPrIN={]

From (2)
Fu(d = 20Pr[N(t)<l]Pr[N= i
= 20 PrIN(d) = K] PrN> £]

L (A~ Ay ()

b
dt
H¥

But

PrING) = = f txl(x)dx]k

exp[— fOtA(x), dx]

Hence, we obtain

Fuo= 3 L [4oar]

exp[ —_ fot/i(x)a’x]Pr[N> k] .......................................... (3)

3. Stochastic Comparisons between 7, and
Ty

2

In this section we consider stochastic comparisons be-
tween 7T, and T . Nand N are positive integer valued

random variables independent of {N(?), £=0}.

Lemma 3.1 If A(#) is increasing in ¢ Pr[N=F] is
discrete  IFR and Pr[N> k] is discrete
DMRL, the A(#) — A, is increasing in ¢
T‘N(l‘) > T‘(t) ............................................................... (4)

for all #> 0, then
AN(t) < /i(t) ....................................................................... (5)

Proof : Differentiating A(2 — A,(#) with respect to £,

we have

........................................................................................................................... (6)
ACD ki Pr[N() = k] Pr[N= k+1]
=4 - :O 2
{ 3. PrIN() = 4 PrIN> k]}
20 PrIN() = k] Pr[N= k+1], ,ﬁo Pr[N() = k] Pr[N> k]
_ ,ﬁ: Pr{N() = #] Pr[N> £+2]. ﬁ: PrIN(H) = E\NPAN> k+1]
_[A(t)]z * =0 e e (7)

=()

{gopr[N(t)z E Pr[N> k]}Z
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since A(#) is increasing in ¢, then (6) is positive. The numerator of (7) is

20 Pr[N(H = £] Pr[N= k+1] 20 Pr[M() = k) PrIN> &)

D:

;:]()Pr[N(t) — K] Pr[N= £+2] 20Pr[zv(t) = k] PrINY k+1]

. gopr[N(t) = b+ 1] PriN= & +2] g:opr[zv(t) — k+ 1] Pr[N> k+1]

;':Opr[zv(t) = k] Pr[N= k+2]

- Z Osklz;zzgoo

Pr[N(8)=k;+1] Pr[NMH = ky,+1]
PrN(H = k] Pr[N($) = k,]

| PrIN=k +2] Pr[N=#k +1]
Pr[N=~k,+2] Pr[N>k,+1]

by the basic composition Fomular [2].
nant is

Pr[N() =k +1] PrIN(D) = k,+1]] 5
PrIND=k]  Pr(N(D=%,) |~

The second determent is
IFR and Pr[N>£k] is discrete
D<(. It follows that A(#) — Ap(#) is increasing in £

crete

Remark 3.1 If Pr[N) £]=0 for all k>0,
then A,(H=A(D.

Remark 3.2 If Pr[N>0]=1,
then A(D/A()= Pr[N=1].

Theorem 3.1 Consider two probability
Pr[N,=#k] and Pr[N,=F] such that
Pr[N,=0]= Pr[N,=£k]=0.
If for all =0 and x>0, for A<k,

PriNy=k)] _ PriNo=hy) )
PriN, = k] PrIN, = k]

then
Falttn) £y

qu(H—x) < an(t) ..................................................... (10)

The first determi-

<0 since Pr[N=£k] is dis-
DMRL. Thus

20Pr[N(t) = K Pr[N> k+1]

Theorem 3.2 Consider two probability Pr[N;>%] and
Pr[N,> k] such that Pr[N,>0]=

Pr[N,>0]=1. If for all t=0 and x>0,

for ki <k,
Pr[N1>k2] > PI‘[N2>/€2] ..................................... (11)
Pr[Nl>k1] B Pr[N2>kl]
then
F y (t+ F (£
Nl( %) < __Nl() ........................................... (12)
Fotn =~ FrpQ

Theorem 3.3 Consider two probability Pr[N,>%] and
Pr[N,> k] such that

Pr[N,>0]= Pr[N,>0]=1. If for all
t=0 and x>0, for A <k,.
Pr[N1>k2] PrIND R 13
BrN,> k] = PrlNy> k] (13)
then
[ Fytae [TF  (dax
—F‘M(t+x) ?NZ(t) ..................... (14)
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4. The Model

The system is replaced whenever the number of im-

perfect repairs reaches # times in succession. We con-

stitute the total time W and the total cost C until the
unit completely replaced.
N
X; if N{n
W = 1=nl .................................... (1 5)
ZIX . if Nzn
and A
N .
Z Ci, 1f N< n
C = ;=_11 .................................. (16)
Z} C,+D,if N2n

For convenience, we shall use the following notations.
FIC]=a, PrIN=H = g, and 3 B~ 7,

Theorem 4.1 The total long-run expected cost per system
time can be obtained by using the theory of
renewal process and is equal to,

; 742, + 7,D
K(n) =—1n— ............................................... (17)

;l YiBe

Proof : From renewal theory, we have that

lim K _ _E[C]
oo L E[ W

where E[C] and E[ W} are the expected cost per re-
newal cycle and the expected time of a renewal cycle,

respectively. We compute E[ W] first.

B = 5 E 5 x| N=reriv=s1

* EE[ 2 X, | N= k]Pr[N: £

=2

b
di
H»

Next we compute FEJ C].
n=1 N
Bl = S E 3¢, N=#]Priv=#

= ;1 vep+ 7,0

Theorem 4.2 If F(#) is DMRL and g, is discrete DFR

in % and @, is nondecreasing in 4, then

K@) is nonincreasing in 7,

Yu nt1

7 ut1 ;1 Tk B ;ZI 7k Bk
an+l;il Ve B Bn+1;:1 YrQp

Kn)=

Proof : For our model we have

K(n+1)— K@) =

nt1

n
;1 Ye @t 74D _ ;1 Ye @4t 7,D
nt1

;1 Y Bk /;::1 7k Bk

{the numerator of K(n-+1)— K(n)}

n n
= 7’n+1[ an+1;17k Br— Bn+1;17’k ap

o Enae 2s)

Y+l

n n
where a(n)=a ,,, ;kaﬂk_ﬂn+l ;IVka’k

. 7w ntl _ n
and b(n)= 7 i ;1 Yx B ;1 Ve By

If F(# is DMRL, g, is nonincreasing in s,

aln+1)— aln)

ntl

n
= @y ;l @y Br— an+1;1 Yk B

_( Baisz g:llﬂ Br— Bat 1;"1 Yk Bk)

=0

since @, is nondecreasing and B3, is discrete DFR.

Thus, a(n) is nondecreasing in .
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Furthermore, if 8, is discrete DFR in £, Since £ (1), >1/D > K () we can verify
K@2)-K(Q)<o
b(n+1)—b(n)

— 7 a+1 _ Yn ntl
_( Yure 7n+1)§1 7k B and
BT e b (K (n+1)- K ()] >0

00

thus &(#») is nonincreasing in . Hence Hence theorem 43 is proved.

Kn)=bn)/ a(#) is nonincreasing in .

Example 4.1 When Pr[N=k] = p(1—p) *~!

Theorem 4.3 Let F(7) is DMRL and P, is discrete (geometric distribution), F(# is DMRL, and
DFR, and that K (1)>1/D > K (), then there exists uniquely a fi-
) nite optimal »* which minimizes K(#), where
K(1>>E>X(DO)’ .................................................... (19)
&) Tf—p(H(l—p)z)—p
there exists at least one finite positive period x* which @~ a;(1-p)
minimizes the total long-run expected cost per unit time and
K(#n). L( ~D
q
R(o) =2%tp "0 7
o 2 BA
Proof : For the infinity-horizon case we want to find a # 1+p
that minimizes K(#). From theorem 4.2, A= ; a,(1—p) #!
{the numerator of K(n+1)— K(n))} ik
= 7’n+1[ Ayt ;l Ve Br— Bari ;1 Te @ 5. Conclusion
ntl n
— D( ' ;L: e B~ kz e Bk)] In this paper we developed the optimal replacement
Vatl £=1 =1 . .
model depending on age. In developing the model, we sup-
) ] posed the random process that determines the time and
is nondcereasing 7. cost as a discrete probability function instead of continuous.
d1=n In our model the number of minimal repairs is proposed
y Bt By prop
K@1)= p ,26’— 2 a instead of age of the system, ie., the system is replaced
and . 2 whenever the number of minimal repairs reaches # times in
_ succession. In policy we discuss the property of Pr[N= k]
K (co)= ___q_o‘y[)’_ under which an optimum replacement period exists for
a Br—B ra L L
minimizing the total long-run average cost per unit time.
The basic composition formular is used in deriving many
where

. of the results.
a,= }terc}o(Pr[Nén]/Pr[NZn+l])21,
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