DOI QR코드

DOI QR Code

Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm

전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별

  • 곽동훈 (부산대학교 대학원 지능기계공학과) ;
  • 이춘태 (부산대학교 대학원 지능기계공학과) ;
  • 정봉호 (부산대학교 대학원 지능기계공학과) ;
  • 이진걸 (부산대학교 기계공학부)
  • Published : 2003.06.01

Abstract

This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.

Keywords

References

  1. N. N. and N. Sepehri, 'Robust force controller design for an electro-hydraulic actuator based on nonlinear model,' Proc. Int. Conf. on robotics and automation, pp. 200-206, 1999 https://doi.org/10.1109/ROBOT.1999.769967
  2. H.-S. Tan, 'Model identification of an automotive hydraulic active suspension system,' Proc. AACC, pp. 2920-2924, 1997 https://doi.org/10.1109/ACC.1997.611992
  3. R. Majjad, 'Estimation of suspension parameters,' Proc. IEEE Int. Conf on control application, pp.522-527, 1997 https://doi.org/10.1109/CCA.1997.627709
  4. V. Petridis, Emmanuel Paterakis and Athanasios Kehagiaas, 'A hybrid neural genetic multimodel parameter Estimation Algorithm,' IEEE Trans. on neural networks, vol. 9, no.5, pp. 862-876, 1998 https://doi.org/10.1109/72.712158
  5. 곽동훈, 이춘태, 정봉호, 이진걸, '신경망·유전자 알고리즘을 이용한 전기.유압 서보시스템의 파라미터 식별,' 한국정밀공학회 논문지, 제19권, 제11호, pp. 76-83, 11. 2002
  6. L. A. Feldkamp, G. V. Puskorius, L. I. Davis,Jr. and F. Yuan, 'Neural control systems trained by dynamic gradient methods for automotive applications,' IEEE Int. Joint Conf. on neural network, vol. 2, pp. 798-804, 1992 https://doi.org/10.1109/IJCNN.1992.226889
  7. A. Onat, H. Kita, Yokohama and Y. Nishikawa, 'Recurrent neural networks for reinforcement learning: architecture, learning algorithms and internal representation,' IEEE Int. Conf. on neural network, vol. 3, pp. 2010-2015, 1998 https://doi.org/10.1109/IJCNN.1998.687168
  8. A. Rubaai and R. Kotaru, 'Adaptation learning control scheme a high performance permanent magnet stepper motor using online random training of neural networks,' IEEE Trans. on industry applications, vol. 37, no. 2, 2001 https://doi.org/10.1109/28.913714