PREDICTING PARAMETERS OF TRANSIENT STORAGE ZONE MODEL FOR RIVER MIXING

  • Published : 2003.04.01

Abstract

Previously developed empirical equations used to calculate the parameters of the transient storage model are analyzed in depth in order to evaluate their behavior in representing solute transport in the natural streams with storage zone. A comparative analysis of the existing theoretical and experimental equations used to predict parameters of the transient storage (TS) model is reported. New simplified equations for predicting 4 key parameters of the TS model using hydraulic data sets that are easily obtained in the natural streams are also developed. The weighted one-step Huber method, which is one of the nonlinear multi-regression methods, is applied to derive new parameters equation. These equations are proven to be superior in explaining mixing characteristics of natural streams with the transient storage zone more precisely than the other existing equations.

Keywords

References

  1. Bahr, J. M. and Rubin, J. (1987). 'Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions.' Water Resources Research, Vol. 23, No. 3, pp. 438-452
  2. Bencala, K. E. (1984). 'Interactions of solutes and streambed sediment 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport.' Water Resources Research, Vol. 20, No. 12, pp. 1804-1814
  3. Bencala, K. E., McKnight, D. M., and Zellweger, G. W. (1990). 'Characterization of transport in an acidic and metal-rich mountain stream based on a Lithium tracer injection and simulations of transient storage.' Water Resources Research, Vol. 26, No. 5, pp. 989-1000 https://doi.org/10.1029/89WR03235
  4. Bencala, K. E., and Walters, R. A. (1983) 'Simulation of solute transport in a mountain pool-rime stream: A transient storage model.' Water Resources Research, Vol. 19, pp. 718-724
  5. Castro, N. M. and Hornberger, G. H. (1991). 'Surface-subsurface water interactions in an alluviated mountain stream channel.' Water Resources Research, Vol. 27, pp. 1613 -1621 https://doi.org/10.1029/91WR00764
  6. Chatwin, P. C. (1980). 'Presentation of longitudinal dispersion data.' Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineering, Vol. 106, pp. 71-83
  7. Cheong, T. S. and Seo, I. W. (2000). 'Predicting Parameters of Storage Zone Model for Water Quality Analysis in Rivers.' Korean Water Resources Association, Vol. 12, No. 2, pp. 667-678
  8. Cbeong, T. S. and Seo, I. W. (2002). 'Parameter Estimation of the Transient Storage Model by Routing Method for River Mixing Processes.' Water Resources Research, accepted https://doi.org/10.1029/2001WR000676
  9. Czeruszenko, W., Rowinski, P.-M., and Suk-hodolov, A. (1998). 'Experimental and numerical validation of the dead-zone model for longitudinal dispersion in rivers.' Journal of Hydraulic Research, ASCE, Vol. 36, No. 2, pp. 269-280
  10. D'Angelo, D. J., Webster, J. R., Gregory, S. V., and Meyer, J. L. (1993). 'Transient storage in Appalachain and Cascade mountain streams as related to hydraulic characteristics.' Journal of North America Benthic Society, Vol. 12, pp, 223-235 https://doi.org/10.2307/1467457
  11. Fernald, A. G., Wigington, P. J. Jr., and Landers, D. H. (2001). 'Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates.' Water Resources Research, Vol. 37, No. 6, pp. 1681-1694 https://doi.org/10.1029/2000WR900338
  12. Fischer, H. B. (1968a). 'Dispersion predictions in natural streams.' Journal of Sanitary Engineering Division, ASCE, Vol. 94, No. 5, pp. 927-944
  13. Fischer, H. B. (l968b). 'Method for Predicting Dispersion Coefficients in Natural Streams, with Applications to Lower Reaches of the Green and Duwamish Rivers Washington.' U.S. Geological Survey Professional Paper 582-A
  14. Godfrey, R. G., and Frederick, B. J. (1970). 'Stream dispersion at selected sites.' U.S. Geological Survey Professional Paper 433-K
  15. Hart, D. R. (1995). 'Parameter estimation and stochastic interpolation of the transient storage model for solute transport in streams.' Water Resources Research, Vol. 31, No. 2, pp. 323-328 https://doi.org/10.1029/94WR02739
  16. Hays, J. R., Krenkel, P. A., and J. Karl B. Schnelle. (1967). 'Mass transport mechanisms in open-channel flow.' Sanitary and Water Resources Engineering Department of Civil Engineering Technical Report 8, Vanderbilt University, Nashville, Tennessee
  17. Kim, B. K., Jackman, A. P., and Triska, F. J. (1992). 'Modeling biotic uptake by periphyton and transient hyporrheic storage of nitrate in a natural stream.' Water Resources Research, Vol. 28, pp. 2743-2752 https://doi.org/10.1029/92WR01229
  18. Mulholland, P. J., Steinman, A. D., Marzolf, E. R., Hart, D. R., and Deangelis, D. L. (1994). 'Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams,' Oecologia, Vol. 98, pp. 40-47 https://doi.org/10.1007/BF00326088
  19. Nordin, C. F., and Sabol, G. V. (1974). 'Empirical data on longitudinal dispersion.' U.S. Geological Survey Water Resources investigations 20-74, Washington, D. C.
  20. Nordin, C. F., and Troutman, B. M. (1980). 'Longitudinal dispersion in rivers: The persistence of skewness in observed data.' Water Resources Research, Vol. 16, No. 1, pp. 123-128
  21. Okubo, A. (1973). 'Effect of shoreline irregularities on streamwise dispersion in estuaries and other embayments.' Netherlands Journal of Sea Research, Vol. 6, No. 1, pp. 213-224 https://doi.org/10.1016/0077-7579(73)90014-8
  22. Pedersen, F. B. (1977). 'Prediction of longitudinal dispersion in natural streams.' Hydrodynamics and Hydraulic Engineering Series Paper No. 14, Technical University of Denmark
  23. Runkel, R. L. and Chapra S. C. (1993). 'An efficient numerical solution of the transient storage equations for solute transport in small streams.' Water Resources Research, Vol. 29, No. 1, pp. 211-215 https://doi.org/10.1029/92WR02217
  24. Seo, I. W., and Maxwell W. H. C. (1992). 'Modeling low-flow mixing through pools and riffles.' Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 10, pp. 1406-1423
  25. Seo I. W. and Cheong, T. S. (1998). 'Predicting longitudinal dispersion coefficient in natural streams,' Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 1, pp. 453-465 https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(25)
  26. Seo I. W. and Cheong, T. S. (2001). 'Moment-based calculation of parameters for the storage zone model for river dispersion.' Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 6, pp. 453-465 https://doi.org/10.1061/(ASCE)0733-9429(2001)127:6(453)
  27. Seo, I. W., and Yu, D. (2000) 'Modeling solute transport in pool-and-riffle streams.' Water Engineering Research, Korean Water Resources Association, Vol. 1, No. 3, pp. 171-185
  28. Taylor, G. I. (1954). 'The dispersion of matter in turbulent flow through a pipe.' Proceedings of The Royal Society of London, Series A, Vol 223, pp. 446-468
  29. Thackston, E. L., and Karl B. Schnelle, J. (1970) 'Predicting effects of dead zones on stream mixing,' Journal of the Sanitary Engineering Division, Proceedings of the American Society of Civil Engineering, Vol. 96, No. SA2, pp. 319-331
  30. Wagner, B. J. and Gorelick, S. M. (1986). 'A statistical methodology for estimating transport parameters: Theory and applications to one-dimensional advective-dispersive systems.' Water Resources Research, Vol. 22, No. 8, pp. 1303-1315
  31. Wagner, B. J., and Harvey, J. W. (1997). 'Experimental design for estimating parameters of rate limited mass transfer: Analysis of stream tracer studies.' Water Resources Research, Vol. 33, pp. 1731-1741 https://doi.org/10.1029/97WR01067
  32. Worman, A. (2000). 'Comparison of models for transient storage of solutes in small streams.' Water Resources Research, Vol. 36, No. 2, pp. 455-468 https://doi.org/10.1029/1999WR900281
  33. White, W. R., Milli, H., and D.Crabbe, A. (1973). 'Sediment transport: An appraisal methods.' Station Report, IT119, Wallingford, U.K.