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A NOTE ON WEAK CONVERGENCE OF EMPIRICAL
PROCESSES FOR A STATIONARY PHI-MIXING
SEQUENCE!

TAE YooN KiMm!, JaANG HAN Kim! AND Tal Sup LEE?
3

ABSTRACT

A new result of weak convergence of the empirical process is established
for a stationary ¢-mixing sequence of random variables, which relaxes the
existing conditions on mixing coeflicients. The result is basically obtained
from bounds for even moments of sums of ¢-mixing r.v.’s useful for handling
triangular arrays with entries decreasing in size.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULT

Let {&;,7 > 1} be a strictly stationary sequence of random variables satisfying
a ¢-mixing condition

sup{|P(B|A) — P(B)|: Ae M§,B e M} < $(n) = 0 (n — oo)

where M? denotes the o-field generated by ¢; (a < j < b). Denote by F,(t) the
empirical distribution function of the ¢-mixing sequence {;,j > 1} at stage n.
For x € (0,1) let
Ya(t) = UE{Fn(t) —t}, k<t<1l-k (1.1)
n

be the corresponding empirical process. Here o2 = Var(3}.7, g:(&)), g:(¢)
Ijo,q(€) — t, and Ia(-) is the indicator function of A. Further set for 0 < k <
$;t< 11—k <1,

a(s,t) =0 QE[{ng &) }{ggt(fj)}]-
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Define Y (t), kK <t < 1 — K, to be the Gaussian random function specified by
E(Y(1)} =0, E{Y(s)Y(t)} = o(s,1)

for k < s <t <1-— k. The weak convergence of usual empirical process Y, (i.e.,
o, replaced by y/n) has been established by Theorem 22.1 of Billingsley (1968)
under the condition 3 42¢4(i)!/? < co. Then Sen (1971), Yoshihara (1974, 1978)
and Yokoyama (1980) obtained further developments along this line (in the last
paper, the above condition is relaxed to ) #(i) < oo0). We show here that if
k > 0 the above result remains true under less restrictive condition on mixing
coefficients, say, (1.2).

THEOREM 1.1. Let {¢;} be stationary and ¢-mizing with
(i) = O(™") (1.2)
for 1/2 < B. If 6 > 0, then {Y,(t) : s <t <1 — K} converges in law (as n — 00)
to{Y(t) :k <t<1-k}.

REMARK 1.1. Notice that since o, = 0 if ¢t = 0 and t = 1, a positive &
is essential to define the Y, (t) in Theorem 1.1. Note also that o(t,t) = 1 and

o(s,t) may be assumed to be a positive constant c(s,t) depending on ¢ and s. If

> ¢(i) < o0, then

(s,1) = [E{gs 0} + 3 Blon(E)an(en)} + S Elo, (mgt(@)}]

k=2 k=2
o) -1
x [E{g?(sl)} +2) E{gt(él)gt(ﬁk)}] :
. k=2

One of limitations from x > 0 lies in its applicability to statistical problems. For
example, a testing problem of normal vs. heavy tailed distribution usually focuses
the behavior of the empirical process at £ = 0, 1. The main mathematical tool for
the proof of Theorem 1.1 is the following moment bounds useful for triangular
arrays with entries decreasing in size. Applications of these types of moment
bounds are usually found in some settings that arise in nonparametric function
estimation. See Doukhan, Le6n and Portal (1984), Lemma 9 of Truong and Stone
(1992), Lemma A2 of Yu (1993), and Cox and Kim (1995).

LEMMA 1.1. Let {&;} be a centered stationary ¢-mizing sequence with

E(l&) <

Cc

N

[

N (1.3)

E(l&) <
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Let S, =& + -+ &, n>1 and | be a positive integer. If (1.2) holds, then for
alln > 1 and for some 0 < 0 < 1/2

E{(S,)%} < an(t~9) (1.4)

where a does not depend on n.

2. PrROOFS

PrOOF OF THEOREM 1.1. Throughout this proof we simply indicate the
modifications to be made in the well-written proof of Theorem 22.1 of Billings-
ley (1968). Same notations are used here. The first part of Billingsley’s proof
remains unchanged which we can, without loss of generality, assume that & is
uniformly distributed on [0,1]. The second part of the proof shows that the fi-
nite dimensional distributions of {Y,(¢)} converge to those of {Y (¢)}. The same
line as in Billingsley (1968, p.197) applies here. Note that one may use invari-
ance principle instead of Theorem 20.1 of Billingsley (1968) here. Indeed it is
known that a strictly stationary centered ¢-mixing sequence with E(S2) — oo
and E(]X;|**%) < oo for some § > 0 satisfies invariance principle (Ibragimov,
1975). It remains to show that given € > 0, > 0, we can find 6, 0 < § < 1 such
that P{w(Yy,,d) > €} < n for all sufficiently large n.

Fix 1 > € > 0 and i > 0. Since £; is uniformly distributed,

E{lg:(é0) — gso)l} < [t = sl, E{lge(é0) = gs(€)*y <[t —sl.  (2.1)

Assume that 1
—~_ for some = < b < 1. (2.2)

Vvn 2
Since (1.3) holds by (2.1) and (2.2), an application of Lemma 1.1 yields

n
B{| Y (a) - 0.(69)
i=1
for some positive constants K; and 0 < § < 1/2. Then we have
E{|Yy(t) — Yu(s)[*} < K10, % n'n™% = (nh,)™

€<|t | <
— -8
nb

21
} < Kinln=*

where Ay, is a slowly varying function. Note that under the conditions of theorem,
it is known that o2 = nh,. Using (2.2) and properties of the slowly varying
function it is easy to see that the last expression is bounded by

0ol /b o

t—s
€

t__.
K- 5

=K -

(2.3)

€
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for some 6y < # and a = 6yl/b > 1 since one may choose [ sufficiently large. Note
that 6y/b < 1. 4
Assume now that p is a number satisfying €/n® < p and consider the random
variables
Yo(s+ip) = Yo(s+(t—1)p), i=1,...,m,

where m is a positive integer. By (2.3) and Theorem 12.2 of Billingsley (1968),

P(max |Yas +ip) ~ Ya(s)| 2 3) < 17 (%) 5" (2.4)

for some positive constant K. Then by (22.18) of Billingsley (1968), we have

sup  |Yu(t) ~ Ya(s)| < 3max |[Yu(s +ip) - Ya(s)| +pv.  (25)
s<t<s+mp i<m

If
i < < i
nb =P v’
then (2.4) applies, and it follows by (2.5) that

(2.6)

K
P( sup  [Ya(t) = Ya(s)| > de) < —romp®.
sStSsI:-mpl n( ) n( )( = — 62l+a p
Choose § > 0 so that K§*~!/e?+® < 5. The choice of such 4 is possible because
a > 1. It then follows that
P( sup |Ya(t) = Ya(s) > de) <,
s<t<s+4

provided there exists a p and an integer m such that (2.6) holds and mp = ¢.
But this is equivalent to requiring the existence of an integer m such that

4 d 1
E\/ﬁ<m<—nb forsome§<b<1
€

which is true for all sufficiently large n. The rest of the proof is same as in
Billingsley and Theorem 1.1 is proven. (]

PrOOF OF LEMMA 1.1. We start with the well known moment inequality
for ¢-mixing. Let 71, ro be positive numbers such that 7"1_1 + 7*2_1 = 1. Suppose
that X and Y are uniform mixing random variables measurable with respect to
the o-fields M% _, M respectively and assume further that || X||,,, ||Y||», < oo
Then

|E(XY) - E(X)EY)| <26/ | X | Y |lr - (2.7)
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See Ibragimov (1962) for its proof. First observe that under the conditions of
theorem there exists a constant a such that

E(S%) < an'~?

for some 0 < 6 < 1/2. Indeed

E(S) =Y EE)+) D |EE&E)]
i=1 i#£]

< nE@E) +n Y |E(&S)]

=1

nB(E) +2nB(iEh 31

=1
< ¢(nY/? + 2n'/2n1-F)
< ani-?

IA

for some 0 < # < 1/2. Note that in the above we used (1.2), (1.3) and (2.7) with
r1 = 1 and 73 = oco. This verifies that (1.4) is true for | = 1. It will therefore be
sufficient to assume that (1.4) is true if [ is an integer m > 1 and prove that it is
then true if | = m 4 1. We thus assume in the following that the lemma is true
if [ =m, i.e., B(S2™) < (const) - n{1=™ for some 0 < 6 < 1/2.

Let & be a positive integer, to be determined more precisely below, and define
Ty, S, and Ch, by

n+k . 2n+k
To=Y &, Sa= Y ¢ and Cp = E(S2mHD).
nt1 n+k+1

Then we are to prove
Cp < an=0m+) =1 2 . (2.8)
for a proper choice of a. In order to prove this we first prove that if ¢; > 0,
E{(Sn + 8)"™ ) < (24 61)Cp + anI=0m+) 1y — 1 9 (2.9)

for a proper choice of a; and k. In fact remembering that S, and Sn have the
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same distribution,

E{(Sn+‘§n)2m+2} :2§2(2 +2> (S5, 2m+2— ])

i=o » 7
2m+2 2ol 2m + 2 2m+2—
= B(S2 )+ E(S, )+ < _ )E(SJS mH2y
; J
Jj=1
2m+1
<20+ <2m+2>|E (858,77, (2.10)
Jj=1 J
Now for the second term of (2.10) using (2.7) with
; 5 2m+2—j 2m + 2 2m + 2
X=S‘77“Y=Sn J, ry.= J and T2=m,
we have
‘ (S]S 2m+2— ])‘ < 2d)}lc/(2m+2)cn + lE(STjL)E(S?lm+2—j)| (2.11)

for j =1,...,2m + 1. We substitute this in (2.10) to obtain

B {(Sn + 5,22}

2m+1 om + 9
<2C, + Z( ) {|E SJ E(S2m+2—J |+2¢1/(2m+2)0 }

=2

for some constant b not involving k. In the last expression, we used E(S,) = 0
for j =1 and j = 2m + 1. An application of Hélder’s inequality to the last term
in (2.12) yields that for j =2,...,2m,

E(S3)B(S2™279) < (B|S,"™)//*™ (B|S, o) Pt/
= (Elgn|2m)(2m+2)/2m

which is at most (const) - n(1=9)(m+1) by the induction hypothesis. Substituting
this back into (2.12), we find that

B{(Sn + $0)"™*2) < 2+ b8/ ") 0 + ayn1-OmHD)
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for some constants a;, b not involving k. To prove (2.9) we need only to increase
k, if necessary, to make the second term in the parenthesis < ¢;.
Next we prove that, if ¢ > 0, there is a constant as and a value of k for which

Con < (24+6)Cp + aQn(l_e)(mH), n>1. (2.13)

In fact, applying Minkowski’s inequality and (2.9), we find that

N 2n+k 2m+2
CZnZE{Sn+Sn+Tn— Z f]}
j=2n+1

n+k
< [(ElSn+Sn12m+2)l/(2m+2)+ Z (Elfj|2m+2)l/(2m+2)
j=n+1
2n+k o2
1/(2m+2)
+ ) (Bl ]
j=2n+1

1/(2m+2)
[{(2 +6)C, + aln(l_a)(mﬂ)}

IN

2 2
+ 2kC§/<2m+2>] (Bm2)

1/(2m+2) 12m+2
< [(1+e1){(2+61)Cn+am(1—o)(m+1)} /( )]

if n is sufficiently large. Then
Con < (1 + 61)2m+2 {(2 + El)Cn + aln(l‘e)(m"‘l)}

if n is sufficiently large. If €; is so small that (1 + €)?*™*2(2 + €1) < 2 +¢, there
must be ay for which (2.13) is true.
According to (2.13)

Cor < (24 €)Cy + ay {z(r——l)(l—G)(m—H) + (2 4 €)20—DA-0)m+1)
+o (24 e)(r—l)}

2+¢€ -1
T r—1}(1-0)(m+1

if € is so small that 2 + ¢ < 20790+ gych choice is possible because (1 —
6)(m+1) > 1 (i.e., 1 —6 >1/2 and m > 1). Then if € is chosen in this way,

Cyr < ag-270=0(m+1) > g (2.14)
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where

2+¢ -1
_ . o—(1-8)(m+1 .
as =Ci +as 2 it )(1 ————2(1_6)(m+1)) .

Finally if n is any positive integer it can be written in the form
n=2"4+u2 o <+ 2 4

where
M <p<2tl

and each v; is either 0 or 1. Then S,, can be written as the sum of r + 1 groups
of sum containing 27, 11277, ... terms and using Minkowski’s inequality, (2.14)
and the fact that the {¢;} process is stationary,

Cn < { (E|52r|2m+2)1/(2m+2) + (E|S2r_1'2m+2)1/(2m+2)
bk (B|S 22/ @mtD) }2m+2
< as {2r<1—0>/2 4 or--0)/2 L. 41
o(r+1)(1-0)/2 _q 2m—+2
- a3{ 20072 _ | }

1-6)(m+1)

}2m+2

<a-n(

for some constant a, as was to be proved. O
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