INDEPENDENCE TEST FOR BIVARIATE CENSORED DATA UNDER UNIVARIATE CENSORSHIP

  • Kim, Jin-Heum (Department of Applied Statistics, University of Suwon) ;
  • Cai, Jian-Wen (Department of Biostatistics, University of North Carolina at Chapel Hill)
  • Published : 2003.06.01

Abstract

We propose a test for independence of bivariate censored data under univariate censorship. To do this, we first introduce a process defined by the difference between bivariate survival function estimator proposed by Lin and Ying (1993) and the product of the product-limit estimators (Kaplan and Meier, 1958) for the marginal survival functions, and derive its asymptotic properties under the null hypothesis of independence. We propose a Cramer-von Mises-type test procedure based on the process . We conduct simulation studies to investigate the finite-sample performance of the proposed test and illustrate the proposed test with a real example.

Keywords

References

  1. The Annals of Statistics v.14 Simulated power functions Beran,R. https://doi.org/10.1214/aos/1176349847
  2. CLAYTON, D. G. (1978). 'A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence', Biometrika, 65, 141-151 https://doi.org/10.1093/biomet/65.1.141
  3. CUZICK, J. (1982). 'Rank tests for association with right censored data', Biometrika, 69, 351-364 https://doi.org/10.1093/biomet/69.2.351
  4. DABROWSKA, D. (1986). 'Rank tests for independence for bivariate censored data', The Annals of Statistics, 14, 250-264 https://doi.org/10.1214/aos/1176349853
  5. DlABETlC RETINOPATHY STUDY RESEARCH GROUP (1985). 'Diabetic retinopathy study', Investigative Ophthalmology and Visual Science, 21, 149-226
  6. HSU, L. AND PRENTICE, R. L. (1996). 'A generalization of the Mantel-Haenszel test to bivariate failure time data', Biometrika, 83, 905-911 https://doi.org/10.1093/biomet/83.4.905
  7. KAPLAN, E. L. AND MEIER, P. (1958). 'Nonparametric estimation from incomplete observations', Journal of the American Statistical Association, 53, 457-481 https://doi.org/10.2307/2281868
  8. KlM, J. (1999). 'A Kolmogorov-Smirnov-type test for independence of bivariate failure time data', Journal of the Korean Statistical Society, 28, 469-478
  9. LlN, D. Y. AND YlNG, Z. (1993). 'A simple nonparametric estimator of the bivariate survival function under univariate censoring', Biometrika, 80, 573-581 https://doi.org/10.1093/biomet/80.3.573
  10. OAKES, D. (1982). 'A concordance test for independence in the presence of censoring', Biometrics, 38, 451-455 https://doi.org/10.2307/2530458
  11. PONS, O. (1986). 'A test of independence between two censored survival times', Scandinavian Journal of Statistics, 13, 173-185
  12. PONS, O., KADDOUR, A. AND DE TURCKHElM, E. (1992). 'A nonparametric approach to dependence for bivariate censored data', In Survival Analysis : State of the Art (J. P. Klein and P. K. Goel, eds.), 381-392, Kulwer Academic Publishers, Netherlands
  13. PONS, O. AND DE TURCKHElM, E. (1991). 'Tests of independence for bivariate censored data based on the empirical joint hazard function', Scandinavian Journal of Statistics, 18, 21-37
  14. PRENTICE, R. L. AND CAI, J. (1992). 'Covariance and survivor function estimation using censored multivariate failure time data', Biometrika, 79, 495-512 https://doi.org/10.1093/biomet/79.3.495
  15. SHIH, J. H. AND LOUIS, T. A. (1996). 'Tests of independence for bivariate survival data', Biometrics, 52, 1440-1449 https://doi.org/10.2307/2532857
  16. SHORACK, G. R. AND WELLNER, J. A. (1986). Empirical Processes with Applications to Statistics, Wiley, New York
  17. TSAl, W. Y. AND CROWLEY, J. (1998). 'A note on nonparamethc estimators of the bivariate survival function under univariate censoring', Biometrika, 85, 573-580 https://doi.org/10.1093/biomet/85.3.573
  18. TSAl, W. Y. AND CROWLEY, J. (1998). 'A note on nonparamethc estimators of the bivariate survival function under univariate censoring', Biometrika, 85, 573-580 https://doi.org/10.1093/biomet/85.3.573